Regulation 2023

Program Structure

1092 DIPLOMA IN AERONAUTICAL ENGINEERING

Program Outcomes (PO's)

POs are statements that describe what students are expected to know and be able to do upon graduating from the program. These relate to the skills, knowledge, analytical ability, attitude, and behavior that students acquire through the program.

The POs essentially indicate what the students can do from subject-wise knowledge acquired by them during the program. As such, POs define the professional profile of an engineering diploma graduate.

NBA has defined the following seven POs for an Engineering diploma graduate:

PO1: Basic and Discipline-specific knowledge: Apply knowledge of basic mathematics, science and engineering fundamentals and an engineering specialization to solve the engineering problems.

PO2: Problem analysis: Identify and analyse well-defined engineering problems using codified standard methods.

P03: Design/ development of solutions: Design solutions for well-defined technical problems and assist with the design of systems components or processes to meet specified needs.

P04: Engineering Tools, Experimentation, and Testing: Apply modern engineering tools and appropriate technique to conduct standard tests and measurements.

P05: Engineering practices for society, sustainability and environment: Apply appropriate technology in the context of society, sustainability, environment and ethical practices.

P06: Project Management: Use engineering management principles individually, as a team member or as a leader to manage projects and effectively communicate about well-defined engineering activities.

P07: Life-long learning: Ability to analyse individual needs and engage in updating in the context of technological changes.

Credit Distribution

Semester	No of Courses	Periods	Credits
Semester I	8	640	20
Semester II	9	640	20
Semester III	7	640	21
Semester IV	7	640	19
Semester V	8	640	22
Semester VI	3	660	18
		Total	120

[#] Industrial Training during Summer vacation for Two Weeks has to be completed to earn the required two credits.

				Semester III				
#	Course Category	Course Type	Code	Course Title	L-T-P	Period	Credit	End Exam
1	Program Core	Theory	1091233110	Components of Aircraft Structures	3-0-0	45	3	Theory
2	Program Core	Theory	1092233210	Material and Testing Processes	3-0-0	45	3	Theory
3	Program Core	Theory	1092233310	verodynamics 3-0-0		45	3	Theory
4	Program Core	Practical/Lab	1091233420	Components of Aircraft Structures Practical	0-0-6	90	3	Practical
5	Program Core	Practical/Lab	1092233520	Material and Testing Processes Practical	0-0-6	90	3	Practical
6	Program Core	Practical/Lab	1092233620	Aerodynamics Practical	0-0-6	90	3	Practical
7	Open Elective	Advanced Skill Certification	1092233760	Advanced Skills Certification - III	1-0-2	60	2	NA
8	Humanities & Social Science	Integrated Learning Experience	1092233880	Growth Lab	-	30	0	-
9	Audit Course	Integrated Learning Experience	1092233881	Induction Program - II	-	16	0	-
10	Audit Course	Integrated Learning Experience	1092233882	I&E/ Club Activity/ Community Initiatives	-	16	0	-
11	Audit Course	Integrated Learning Experience	1092233883	Shop floor Immersion	-	8	0	-
12	Audit Course	Integrated Learning Experience	1092233884	Student-Led Initiative	-	22	0	-
13	Audit Course	Integrated Learning Experience	1092233885	Emerging Technology Seminars	-	8	0	-
14	Audit Course	Integrated Learning Experience	1092233886	Health & Wellness	0-0-2	30	1	-
	Test & Revisions Library							NA
					Total	640	21	

				Semester IV				
#	Course Category	Course Type	Code	Course Title	L-T-P	Period	Credit	End Exam
1	Program Core	Theory	1091234110	Aircraft System	3-0-0	45	3	Theory
2	Program Core	Practicum	1092234210	Aircraft Engine Propulsion	3-0-0	45	3	Theory
3	Program Core	Practicum	1091234320	Aircraft System Practical	0-0-6	90	3	Practical
4	Program Core	Practicum	1092234420	Aircraft Engine Propulsion Practical	0-0-6	90	3	Practical
5	Program Core	Practicum	1091234520	Aero Modeling Practical Using CAD	0-0-4	60	2	Practical
6	Program Core	Practicum	1092234640	Aircraft structural repair	1-0-4	75	3	Practical
7	Open Elective	Advanced Skill Certification	1092234760	Advanced Skills Certification - IV	1-0-2	60	2	NA
8	Audit Course	Integrated Learning Experience	1092234882	I&E/ Club Activity/ Community Initiatives	-	30	0	-
9	Audit Course	Integrated Learning Experience	1092234883	Shop floor Immersion	-	8	0	-
10	Audit Course	Integrated Learning Experience	1092234884	Student-Led Initiative	-	24	0	-
11	Audit Course	Integrated Learning Experience	1092234885	Emerging Technology Seminars	-	8	0	-
12	Audit Course	Integrated Learning Experience	1092234886	Health & Wellness	-	30	0	-
13	Audit Course	Integrated Learning Experience	1092234887	Special Interest Groups (Placement Training)	-	30	0	-
				Test &	Revisions	30		
	Library							
					Total	640	19	

				Semester V				
#	Course Category	Course Type	Code	Course Title	L-T-P	Period	Credit	End Exam
1	Program Core	Theory	1091235110	UAV System Design	3-0-0	45	3	Theory
2	Program Core	Practicum	1092235210	Aircraft Maintenance Engineering	4-0-0	60	4	Theory
4	Program Core	Practicum	1092235320	Aircraft Maintenance Engineering Practical	0-0-6	90	3	Practical
3	Program Core	Practicum	1092235440	Advanced Airframe Structure	1-0-4	75	3	Practical
5	Program Core	Practicum	1091235540	Aircraft Navigation System	1-0-4	75	3	Practical
6	Humanities & Social Science	Practicum	1092235654	Innovation & Startup	1-0-2	45	2	Project
7	Project/Internship	Project/Internship	1092235773	Industrial Training* [Summer Vacation - 90 Hours]	0-0-4	-	2	Project
8	Open Elective	Advanced Skill Certification	1092235860	Advanced Skills Certification - V	1-0-2	60	2	NA
9	Audit Course	Integrated Learning Experience	1092235981	Induction program - III	-	40	0	-
10	Audit Course	Integrated Learning Experience	1092235984	Student-Led Initiative	-	30	0	-
11	Audit Course	Integrated Learning Experience	1092235986	Health & Wellness	-	30	0	-
12	Audit Course	Integrated Learning Experience	1092235987	Special Interest Groups (Placement Training)	-	30	0	-
		•	•	Test &	Revisions	45		
	Library							
		Total	640	22				

				Semester VI				
#	Course Category	Course Type	Code	Course Title	L-T-P	Period	Credit	End Exam
1	Open Elective	Theory		Electives - I (Pathway)	3-0-0	45	3	Theory
2	Open Elective	Practicum		Elective - II (Specialization)	1-0-4	75	3	Practical
3	Industrial Training / Project	Project/Internship		In-house Project / Internship / Fellowship **	-	540	12	Project
					Total	660	18	
3	Industrial Training / Project	Project/Internship	1092236351	Internship	-	540	12	Project
3	Industrial Training / Project	Project/Internship	1092236353	Fellowship	1	540	12	Project
3	Industrial Training / Project	Project/Internship	1092236374	In-house Project	-	540	12	Project

Note: ** Every student should select any one from the In-House Project or Internship or Fellowship. The guidelines given have to be followed.

For the Sandwich programme, Industrial Training in the fourth and seventh semester will be given. The guidelines given have to be followed.

	Elective - I (Pathway)									
#	Course Category	Course Type	Code	Course Title	L-T-P	Period	Credit	End Exam		
1	Elective Technologist	Theory	1091236111	Civil Aviation Requirements	3-0-0	45	3	Theory		
2	Elective Entrepreneurship	Theory	6000236112	Entrepreneurship	3-0-0	45	3	Theory		
3	Elective Technocrats	Theory	1091236113	Airworthiness Requirements	3-0-0	45	3	Theory		

	Elective - II (Specialization)										
#	Course Category	Course Type	Code	Course Title	L-T-P	Period	Credit	End Exam			
1	Elective	Practicum	1091236241	Helicopter Modeling	1-0-4	75	3	Practical			
2	Elective	Practicum	1091236242	Rocket Modeling	1-0-4	75	3	Practical			
3	Elective	Practicum	1091236243	2 Seater Flight Modeling	1-0-4	75	3	Practical			

1091233110	Components of Aircraft Structures	L	Т	Р	С
THEORY	Components of Afficiant Structures	3	0	0	3

Introduction

Students should have knowledge of aircraft structures, as it is the structure of the aircraft that carries and takes on the weight as well as all aerodynamic loads under different engines as well as operating conditions. This gives students a broad understanding and appreciation of one of the important parts of mechanics of flight.

This course gives exposure and basic knowledge of structural requirements of all lift surfaces, fuselage, landing gear and control surfaces of an aircraft. This will help students to correlate and understand the aerodynamics loads and their effects on the structures better. This also helps students to acquire good skills in servicing and maintenance of these structures.

Students should be physically shown at least lifting and control surfaces structures along with landing gear systems sufficient practice should be given to gent students familiarized with these structures

Course Objectives

The objective of this course is to enable the student to

To Study the basic knowledge of Introduction to Aircraft Structures, Airframe Structures – Aeroplane, Stabilizers, Flight Control Surfaces, Nacelles/Pylons.

Course Outcomes

On successful completion of this course, the student will be able to

- CO 1: Understand the significance of Aircraft Structures.
- CO 2: Understand the significance and Operation of Structure.
- CO 3: Describe Principles of Structure Assembly.
- CO 4: Describe Principles of Air Frame Assembly- aero plane.
- CO 5: Understand the significance and Operation of Stabilize.

Pre-requisites

Nil

1091233110	Components of Aircraft Structures	L	Т	Р	С
THEORY	Components of Afficiant Structures	3	0	0	3

CO/PO Mapping

CO / PO	P01	P02	P03	P04	P05	P06	P07
C01	3	2	-	1	-	-	2
C02	3	2	1	1	-	-	2
C03	3	2	1	1	-	-	2
C04	3	2	-	1	-	-	2
CO5	2	2	-	2	2	-	3

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

Instructional Strategy

- Engage and Motivate: Instructors should actively engage students to boost their learning confidence.
- Real-World Relevance: Incorporate relatable, real-life examples and engineering applications to help students understand and appreciate course concepts.
- Interactive Learning: Utilize demonstrations and plan interactive student activities for an engaging learning experience.
- Application-Based Learning: Employ a theory-demonstrate-practice-activity strategy throughout the course to ensure outcome-driven learning and employability.
- Simulation and Real-World Practice: Conduct demonstrations and hands-on activities in a simulated environment, transitioning to real-world scenarios when possible.
- Encourage Critical Analysis: Foster an environment where students can honestly assess experiment outcomes and analyze potential sources of error in case of

1091233110	Components of Aircraft Structures	L	Т	Р	С	
THEORY	Components of Afficiant Structures	3	0	0	3	

discrepancies.

- Regularly revise the core concepts of structure as they are fundamental to understanding aircraft.
- Focus on understanding the practical applications and operational principles rather than memorizing equations.
- Engage with practical lab sessions or virtual lab simulations to gain hands-on experience with this structure.

Assessment Methodology

	С	ontinuous Asses	sment (40 marks	s)	End Semester
	CA1	CA2	CA3	CA4	Examination (60 marks)
Mode	Written test (Two units)	Written test (Another Two units)	Quiz MCQ (Online / Offline)	Model Examination	Written Examination
Duration	ation 2 Periods 2 Periods		1 Hour	3 Hours	3 Hours
Exam Marks	50	50	60	100	100
Converted to	15	15	5	20	60
Marks	1	5	5	20	60
Tentative Schedule	6th Week	12th Week	13-14th Week	16th Week	

1091233110	Components of Aircraft Structures	L	Т	Р	С
THEORY	Components of Afficiant Structures	3	0	0	3

CA1 and CA2: Assessment written test should be conducted for 50 Marks for two units. The marks scored will be converted to 15 Marks. Best of one will be considered for the internal assessment of 15 Marks.

CA1and CA2, Assessment test should be conducted for two units as below.

Answer five questions (5 X 10 Marks = 50 Marks).

Eight questions will be asked, students should write Five questions. Each unit Four questions can be asked. Each question may have subdivisions. Maximum two subdivisions shall be permitted.

CA3: 60 MCQ can be asked by covering the entire portion. It may be conducted by Online / Offline. The answer scripts of every student (online / offline) for this assessment should be kept for records and future verification. The marks scored should be converted to 5 marks for the internal assessment.

CA4: Model examination should be conducted as per the end semester question pattern. The marks should be converted to 20 marks for the internal assessment.

Question Pattern:

Answer Ten questions by selecting two questions from each unit. Each question carries 10 marks each.

Four questions will be asked from every unit, students should write any two questions. The question may have two subdivisions only.

Syllabus Contents

Unit I	Introduction of Aircraft			
Introduction to aircraft, major aircraft components, aircraft systems and their Functions, reference lines, station and zone identification systems				
Unit II	Aircraft Structures			

1091233110	Components of Aircraft Structures	L	Т	Р	С
THEORY	Components of Afficiant Structures	3	0	0	3

'	e – Horizontal and vertical stabilizers. Primary control surfaces (Ailerons, d Elevators). Secondary control surfaces (Flaps, Slats, spoilers and tabs)		
Nadaci and	a Elevators). Secondary control surfaces (Flaps, Stats, Sponers and tabs)		
Unit III	Structural Assembly		
Structured	components of wing, fuellage and emperriage (H.T + V.T) Structural	7	
assembly t	techniques: riveting, bolting and adhesive bonding.		
Unit IV	Airframe Structures — Aero plane		
Fuselage (ATA 52/53/56) :Construction and pressurization sealing; Wing, stabiliser,pylon and undercarriage attachments; Seat installation and cargo loading system; Doors and emergency exits: construction, mechanisms, operation and			
	ices; Windows and windscreen construction and mechanisms		
UNIT V	Stabilizers		
Construction	on; Control surface attachment.(Rudder, Flap, Aileron) Construction and	7	
attachment; Balancing — mass and aerodynamic.			
	Test + Revision	10	
	TOTAL HOURS	45	

Suggested list of Students Activity,

- Presentation/Seminars by students on any recent technological developments based on the course.
- Periodic class quizzes conducted on a weekly/fortnightly based on the course.
- Mini project that shall be an extension of any practical lab exercise to real-world application

1091233110	Components of Aircraft Structures	L	Т	Р	С
THEORY	Components of Aircraft Structures	3	0	0	3

Text Book for Reference:

- 1. THG Megson, Aircraft Structures for Engineering Students, Edward Arnold, U.K.
- 2. R M Rivello, Theory and Analysis of Flight Structures, McGrawHill Book Co.
- 3. E F Bruhn, Analysis and Design of Flight Vehicle Structures, Tri State offset co. USA.
- 4. G F Titterton, Aircraft Materials and Processes, Himalayan Books, New Delhi.
- 5. ET Hill, The Materials for Aircraft Construction, Pitman, London.
- 6. Dictionary of Aeronautical terms (Dale Crane).
- 7. Aircraft handbook FAA (AC 65-15 A).
- 8. Aircraft structure Ch. 01 (FAA).
- 9. Aircraft Construction Repair and Inspection-By Joe Christy.
- 10. Aviation Maintenance Technician Handbook by FAA.
- 11. Aircraft Maintenance and Repair- Delp/Bent/McKinley,AC 43.1B.

END SEMESTER QUESTION PATTERN - Theory Exam

Duration: 3 Hrs. Max. Marks: 100

Note: Answer Ten questions by selecting two questions from each unit. Each question carries 10 marks each.

Instruction to the Question Setters

Four questions will be asked from every unit, students should write any two questions for 10 marks. The question may have two subdivisions only.

1092233210		L	Т	Р	С
THEORY	Material and Testing Processes	3	0	0	3

Introduction

The high strength over weight ratio of materials required in Aeronautical Engineering, calls for study of sub materials by students at this stage. The need for surface treatments against corrosion and for improved strengths is essential. In this regard, various processes of manufacturing are studied in this subject by the students

Course Objectives

To Study the basic knowledge of Aircraft Material Ferrous & Non-Ferrous.

To study about aerospace fasteners like Bolts, studs and screws & locking devices and Aircraft rivets.

To study the new class of composite materials and its testing methods.

Course Outcomes

On successful completion of this course, the student will be able to

- CO 1: Understand the aircraft Materials
- CO 2: Understand the material's properties and significance.
- CO 3: Exposure to the aircraft rivets, fasteners, bolts, and Nuts
- CO 4: Describe composite materials and properties.
- CO 5: Testing of aircraft materials and evaluation of its properties

Pre-requisites

Nil

1092233210	Matarial and Testing Processes	L	Т	Р	С
THEORY	Material and Testing Processes	3	0	0	3

CO/PO Mapping

CO / PO	P01	P02	P03	P04	P05	P06	P07
C01	3	2	-	1	-	-	2
C02	3	2	1	1	-	-	2
C03	3	2	1	1	-	-	2
CO4	3	2	-	1	-	-	2
C05	2	2	-	2	2	-	3

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

Instructional Strategy

- Engage and Motivate: Instructors should actively engage students to boost their learning confidence.
- Real-World Relevance: Incorporate relatable, real-life examples and engineering applications to help students understand and appreciate course concepts.
- Interactive Learning: Utilize demonstrations and plan interactive student activities for an engaging learning experience.
- Application-Based Learning: Employ a theory-demonstrate-practice-activity strategy throughout the course to ensure outcome-driven learning and employability.
- Simulation and Real-World Practice: Conduct demonstrations and hands-on activities in a simulated environment, transitioning to real-world scenarios when possible.

1092233210	Matarial and Tasting Processes	L	Т	Р	С
THEORY	Material and Testing Processes	3	0	0	3

- Encourage Critical Analysis: Foster an environment where students can honestly assess experiment outcomes and analyze potential sources of error in case of discrepancies.
- Regularly revise the core concepts of structure as they are fundamental to understanding aircraft.
- Focus on understanding the practical applications and operational principles rather than memorizing equations.
- Engage with practical lab sessions or virtual lab simulations to gain hands-on experience with this structure.

Assessment Methodology

	С	End Semester			
	CA1	CA2	CA3	CA4	Examination (60 marks)
Mode	Written test (Two units)	Written test (Another Two units)	Quiz MCQ (Online / Offline)	Model Examination	Written Examination
Duration	2 Periods	2 Periods	1 Hour	3 Hours	3 Hours
Exam Marks	50	50	60	100	100
Converted to	15	15	5	20	60
Marks	15		5	20	60
Tentative Schedule	6th Week	12th Week	13-14th Week	16th Week	

1092233210		L	Т	Р	С
THEORY	Material and Testing Processes	3	0	0	3

CA1 and CA2: Assessment written test should be conducted for 50 Marks for two units. The marks scored will be converted to 15 Marks. Best of one will be considered for the internal assessment of 15 Marks.

CA1and CA2, Assessment test should be conducted for two units as below.

Answer five questions (5 X 10 Marks = 50 Marks).

Eight questions will be asked, students should write Five questions. Each unit Four questions can be asked. Each question may have subdivisions. Maximum two subdivisions shall be permitted.

CA3: 60 MCQ can be asked by covering the entire portion. It may be conducted by Online / Offline. The answer scripts of every student (online / offline) for this assessment should be kept for records and future verification. The marks scored should be converted to 5 marks for the internal assessment.

CA4: Model examination should be conducted as per the end semester question pattern. The marks should be converted to 20 marks for the internal assessment.

Question Pattern:

Answer Ten questions by selecting two questions from each unit. Each question carries 10 marks each.

Four questions will be asked from every unit, students should write any two questions. The question may have two subdivisions only.

Syllabus Contents

raft 7
ess,
for
,

1092233210	Motorial and Testing Processes	L	Т	Р	С	
THEORY	Material and Testing Processes	3	0	0	3]

Unit II	Aircraft Metallic Materials					
	All Clart Metallic Materials					
a) Charac	cteristics, properties and identification of common alloy steels used in	7				
aircraft; Heat treatment and application of alloy steels;						
(b) Testin	g of ferrous materials for hardness, tensile strength, fatigue strength and					
Impact re	sistance.					
(c) Chara	cteristics, properties and identification of common non-ferrous materials					
used in ai	rcraft; Heat treatment and application of non-ferrous materials;					
(d) Testin	g of non-ferrous material for hardness, tensile strength, fatigue strength					
and impa	ct resistance.					
Unit III	Aircraft Materials - Composite and Non- Metallic					
(a) Chara	acteristics, properties and identification of common composite and	7				
nonmetal	lic materials, other than wood, used in aircraft; Sealant and bonding					
agents.						
(b) The d	etection of defects/deterioration in composite and non-metallic material.					
Repair of	composite and non-metallic material.					
Wooden s	structures					
c) Constru	uction methods of wooden airframe structures; Characteristics, properties					
and types of wood and glue used in airplanes; Preservation and maintenance of						
wooden structure; Types of defects in wood material and wooden structures.						
wooden s	tructure, Types of defects in wood material and wooden structures.					
 (b) The detection of defects/deterioration in composite and non-metallic material. Repair of composite and non-metallic material. Wooden structures c) Construction methods of wooden airframe structures; Characteristics, properties and types of wood and glue used in airplanes; Preservation and maintenance of 						

1092233210	Material and Testing Processes	L	Т	Р	С
THEORY	Material and Testing Processes	3	0	0	3

Unit IV	
a) Fasteners, Screw threads	7
Screw nomenclature; Thread forms, dimensions and tolerances for standard thre	eads
used in aircraft; measuring screw threads.	
b) Bolts, studs and screws	
Bolt types: specification, identification and marking of aircraft bolts, internati	ional
standards.	
Nuts: self-locking, anchor, standard types; Machine screws: aircraft specification	ıs;
Studs: types and uses, insertion and removal; Self tapping screws, dowels.	
c) Aircraft rivets	
Types of solid and blind rivets: specifications and identification, heat treatment.	
Riveted joints, rivet spacing and pitch; Tools used for riveting and dimp	oling;
Inspection of riveted joints.	
UNIT V Testing of Aircraft Materials	
Materials testing studies the behavior of materials under different loads	s. In 7
particular, the relationship between the acting forces and the resulting deforma	ation
and the limit stresses that lead to failure of components are considered. a) Ten	ısion
Testing: Elastic-limit Determination; Proof-stress Determination; Yield-stre	ngth
Determination; Yield-point Determination b) Hardness Testing: Brinell Hardn	ness;
Determination; Yield-point Determination b) Hardness Testing: Brinell Hardneschaper Rockwell Hardness, Diamond Pyramid (Vickers) Hardness; c) Bending Te	
·	
Rockwell Hardness, Diamond Pyramid (Vickers) Hardness; c) Bending Te	ests:
Rockwell Hardness, Diamond Pyramid (Vickers) Hardness; c) Bending Te Reverse Bend Test; Flattening Test d) Impact Test.	ests:
Rockwell Hardness, Diamond Pyramid (Vickers) Hardness; c) Bending Te Reverse Bend Test; Flattening Test d) Impact Test. Tests for composites: NDE of Composites, tensile, compression and shear tests	ests:
Rockwell Hardness, Diamond Pyramid (Vickers) Hardness; c) Bending To Reverse Bend Test; Flattening Test d) Impact Test. Tests for composites: NDE of Composites, tensile, compression and shear tests Inter laminar Shear Stress (ILSS), Three point flexure test, Single lap shear test us	ests: S, sing

1092233210	Material and Testing Processes	L	Т	Р	С
THEORY	Material and Testing Processes	3	0	0	3

Suggested list of Students Activity,

- Presentation/Seminars by students on any recent technological developments based on the course.
- Periodic class quizzes conducted on a weekly/fortnightly based on the course.
- Mini project that shall be an extension of any practical lab exercise to real-world application

Text Book for Reference:

- 1. Aircraft handbook FAA (AC 65-15 A).
- 2. Civil Aircraft Inspection Procedures (CAIP 459-Part I, Basic).
- 3. Airframe & Powerplant Mechanics (General Handbook EA-AC 65-9A) FAA.
- 4. Aircraft Materials & Processes by Titterton.
- 5. Machine Drawing by AC Parkinson.
- 6. Advanced Composites (EA-358) by Cindy Foreman Electricity, CAIP 56.

1092233210		L	Т	Р	С
THEORY	Material and Testing Processes	3	0	0	3

END SEMESTER QUESTION PATTERN - Theory Exam

Duration: 3 Hrs. Max. Marks: 100

Note: Answer Ten questions by selecting two questions from each unit. Each question carries 10 marks each.

Instruction to the Question Setters

Four questions will be asked from every unit, students should write any two questions for 10 marks. The question may have two subdivisions only.

1092233310	Agradynamiaa	L	Т	Р	С
THEORY	Aerodynamics	3	0	0	3

Introduction

An aircraft capable of flying in spite of its large weight. It has a particular shape and becomes air borne beyond certain speeds. In order to appreciate the principles involved in flying it is essential to gain knowledge and skill in the area of mechanics of fluids applied to flying.

Course Objectives

To Study the basic knowledge of Physics of the Atmosphere and Aerodynamics, Theory of Flight

– Aeroplane Aerodynamics and Flight Controls, Wind Tunnels.

Course Outcomes

On successful completion of this course, the student will be able to

- CO 1: Understand the significance of Aerodynamics.
- CO 2: Understand the significance and Operation of Theory of Flight.
- CO 3: Describe Principles of aero plane Control.
- CO 4: Describe Principles of Wind Tunnel.
- CO 5: Understand the significance and Operation of High Speed Flight.

Pre-requisites

Nil

1092233310	Agradynamiaa	L	Т	Р	С
THEORY	Aerodynamics	3	0	0	3

CO/PO Mapping

CO / PO	P01	P02	P03	P04	P05	P06	P07
C01	3	2	-	1	-	-	2
C02	3	2	1	1	-	-	2
C03	3	2	1	1	-	-	2
CO4	3	2	-	1	-	-	2
C05	2	2	-	2	2	-	3

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

Instructional Strategy

- Engage and Motivate: Instructors should actively engage students to boost their learning confidence.
- Real-World Relevance: Incorporate relatable, real-life examples and engineering applications to help students understand and appreciate course concepts.
- Interactive Learning: Utilize demonstrations and plan interactive student activities for an engaging learning experience.
- Application-Based Learning: Employ a theory-demonstrate-practice-activity strategy throughout the course to ensure outcome-driven learning and employability.
- Simulation and Real-World Practice: Conduct demonstrations and hands-on activities in a simulated environment, transitioning to real-world scenarios when possible.

1092233310	Aorodynamics	L	Т	Р	С
THEORY	Aerodynamics	3	0	0	3

- Encourage Critical Analysis: Foster an environment where students can honestly assess experiment outcomes and analyze potential sources of error in case of discrepancies.
- Regularly revise the core concepts of structure as they are fundamental to understanding aircraft.
- Focus on understanding the practical applications and operational principles rather than memorizing equations.
- Engage with practical lab sessions or virtual lab simulations to gain hands-on experience with this structure.

Assessment Methodology

	С	End Semester			
	CA1	CA2	CA3	CA4	Examination (60 marks)
Mode	Written test (Two units)	Written test (Another Two units)	Quiz MCQ (Online / Offline)	Model Examination	Written Examination
Duration	2 Periods	2 Periods	1 Hour	3 Hours	3 Hours
Exam Marks	50	50	60	100	100
Converted to	15	15	5	20	60
Marks	15		5	20	60
Tentative Schedule	6th Week	12th Week	13-14th Week	16th Week	

1092233310	Agradynamiaa	L	Т	Р	С
THEORY	Aerodynamics	3	0	0	3

CA1 and CA2: Assessment written test should be conducted for 50 Marks for two units. The marks scored will be converted to 15 Marks. Best of one will be considered for the internal assessment of 15 Marks.

CA1and CA2, Assessment test should be conducted for two units as below.

Answer five questions (5 X 10 Marks = 50 Marks).

Eight questions will be asked, students should write Five questions. Each unit Four questions can be asked. Each question may have subdivisions. Maximum two subdivisions shall be permitted.

CA3: 60 MCQ can be asked by covering the entire portion. It may be conducted by Online / Offline. The answer scripts of every student (online / offline) for this assessment should be kept for records and future verification. The marks scored should be converted to 5 marks for the internal assessment.

CA4: Model examination should be conducted as per the end semester question pattern. The marks should be converted to 20 marks for the internal assessment.

Question Pattern:

Answer Ten questions by selecting two questions from each unit. Each question carries 10 marks each.

Four questions will be asked from every unit, students should write any two questions. The question may have two subdivisions only.

Syllabus Contents

Unit I	Physics of the Atmosphere and Aerodynamics			
Internation	nal Standard Atmosphere (ISA), application to aerodynamics. Airflow	7		
around a body; Boundary layer, laminar and turbulent flow, free stream flow, relative				
airflow, up wash and downwash, vortices, stagnation; The terms: camber, chord,				
mean aerodynamic chord, aerodynamic centre, centre of pressure, stagnation point,				
profile (pa	rasite) drag, induced drag, angle of attack, wash in and wash out, fineness			

1	1092233310	Aerodynomico	L	Т	Р	С
	THEORY	Aerodynamics	3	0	0	3

ratio, wing	g shape and aspect ratio; Thrust, Weight. Generation of Lift and Drag: Angle					
of Attack, Lift coefficient, Drag coefficient, polar curve, stall; Aerofoil contamination						
including ice, snow, frost.						
Unit II	Theory of Flight					
Dalatianal		7				
	nip between lift, weight, thrust and drag; Glide ratio; Steady state flights,	7				
-	nce; Theory of the turn; Influence of load factor: stall, flight envelope and					
structural	limitations; Lift augmentation.					
Unit III	Theory of Flight - Aeroplane Aerodynamics and Flight Controls					
Operation	and effect of:— roll control: ailerons and spoilers;— pitch control:	7				
elevators,	stabilators, variable incidence stabilizers and canards;- yaw control,					
rudder lin	niters;Control using eleven's, ruddervators; High lift devices, slots, slats,					
flaps, flap	erons;Drag inducing devices, spoilers, lift dumpers, speed brakes; Effects					
of wing fe	ences, saw tooth leading edges; Operation and effect of trim tabs, balance					
and ant	balance (leading) tabs, servo tabs, spring tabs, mass balance, control					
	as, aerodynamic balance panels.					
Unit IV	Wind Tunnels					
Types of	wind tunnels, Pressure measurements, Fire measurements. Low speed	7				
wind tunn	els, Open Jet wind tunnels, closed circuit wind tunnels, supersonic tunnels					
UNIT V	High Speed Flight					
Speed o	f sound, subsonic flight, transonic flight, supersonic flight, Mach	7				
number,critical Mach number, compressibility effect, buffet, shock wave,						
aerodynar	mic heating, area rule;Factors affecting airflow in engine intakes of high					
_	craft; Effects of sweepback on critical Mach number.					
	Test + Revision	10				
	TOTAL HOURS	45				
	TOTALTIOUN	. •				

1092233310		L	Т	Р	С
THEORY	Aerodynamics	3	0	0	3

Suggested list of Students Activity,

- Presentation/Seminars by students on any recent technological developments based on the course.
- Periodic class quizzes conducted on a weekly/fortnightly based on the course.
- Mini project that shall be an extension of any practical lab exercise to real-world application

Text Book for Reference:

- 1. E H J Pallet: Aircraft Instruments Principles and Applications, Himalayan Books.
- 2. E H J Pallet, Automatic Flight Control, Blackwell.
- 3. Leach Malvino, Digital Principles and Applications, Tata McGraw Hill.
- 4. Aerodynamics By Clancey.
- 5. Mechanics of Flight By A.C.Kermode.
- 6. Force measurement on symmetric airfoil.
- 7. Force measurement on cambered airfoil.
- 8. Aircraft Instruments-by E.H.J.Pallett
- 9. Aircraft Instruments-by C.A.Williams
- 10. Wind tunnel testing-by pope

END SEMESTER QUESTION PATTERN - Theory Exam

Duration: 3 Hrs. Max. Marks: 100

Note: Answer Ten questions by selecting two questions from each unit. Each question carries 10 marks each.

Instruction to the Question Setters

Four questions will be asked from every unit, students should write any two questions for 10 marks. The question may have two subdivisions only.

1091233420	Components of Aircraft Structures Practical	L	Т	Р	С
PRACTICAL	Components of Afficiant Structures Fractical	0	0	6	3

Introduction:

Students should have knowledge of aircraft structures, as it is the structure of the aircraft that carries and takes on the weight as well as all aerodynamic loads under different engines as well as operating conditions. This gives students a board mechanics of flight.

This course gives exposure and basic knowledge of structural requirements of all lift surfaces, fuselage, landing gear and control surfaces of an aircraft. This will help students to correlate and understand better. This also helps students to acquire good skills in servicing and maintenance of these structures.

Students should be physically shown at least lifting and control surface structures along with landing gear systems sufficient practice should be given to get students familiarized with these structures

Course Objectives:

The objective of this course is to enable the student to To Study the basic knowledge of Introduction to Aircraft Structures, Airframe Structures – Aeroplane, Stabilizers, Flight Control Surfaces, Nacelles/Pylons.

Course Outcomes:

On successful completion of this course, the student will be able to

CO1: Understand the structures developed using sheet metals

CO2: Understand the different joints used in the aircraft structures

CO3: Understand the soldering, swaging, thread cutting, and Cable splicing

CO4: Exposure of different defects occur in the aluminum structures

CO5: Principles used in the Composite repair and inspection methods.

Pre-requisites:

NIL

1091233420	Components of Aircraft Structures Practical	L	Т	Р	С
PRACTICAL	Components of Afficiant Structures Fractical	0	0	6	3

CO/PO Mapping

CO / PO	P01	P02	P03	P04	P05	P06	P07
C01	2	1	1	3	-	-	2
C02	2	2	1	3	-	-	2
C03	2	2	2	3	-	-	3
CO4	2	2	2	3	-	-	2
C05	2	2	-	3	1	-	-

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

Instructional Strategy:

- It is advised that teachers make the learning experience more engaging by introducing innovative and interesting ways of teaching.
- The teachers need to expose the students to material in multiple modes to help them learn it faster and retain it longer.
- Incorporate technology tools and resources, such as online platforms, interactive multimedia, and virtual communication tools, to enhance engagement and provide additional practice opportunities.
- Throughout the course, a theory-demonstrate-practice-activity strategy may be used to ensure that learning is outcome and employability-based.
- Seminars: Host seminars where students present their findings from Swinburne's test and performance curve analyses.
- Group Discussions: Facilitate discussions on the results and implications of these tests for real-world applications.
- Simulation Software: Utilize simulation software to model and analyze the operation

1091233420	Components of Aircraft Structures Practical	L	Т	Р	С
PRACTICAL	Components of Afficiant Structures Fractical	0	0	6	3

- Guest Lectures: Invite industry experts to talk about the latest technologies and trends in motor drives and their applications in robotics and automation.
- This strategy aims to blend theoretical knowledge with practical skills, preparing students for real-world engineering challenges. It encourages active learning, critical thinking, and collaboration among students, essential skills for future engineers.
- Preparation: Before each class, ensure all equipment is functional and safety protocols are in place.
- Assessment: Evaluate students through quizzes, lab reports, and presentations on their understanding and analysis of the experiments.

Assessment Methodology:

	С	End Semester			
	CA1	CA2	CA3	CA4	Examination (60 marks)
Mode	Practical Test	Practical Test	Practical Document	Practical Test	Practical Examination
Portion	First Cycle	Second Cycle	All Exercises	All Exercises	All Exercises
Duration	2 Periods	2 Periods	Regularly	3 Hours	3 Hours
Exam Marks	50	50	100	100	100
Converted to	10	10	10	20	60
Marks 1		0	10	20	60
Tentative Schedule	7th Week	14th Week	15th Week	16th Week	

1091233420	Components of Aircraft Structures Practical	L	Т	Р	С
PRACTICAL	Components of Afficiant Structures Fractical	0	0	6	3

Note:

 CA1 and CA2: All the exercises/experiments as per the portions mentioned above should be completed and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation as below. The marks awarded will be converted to 10 Marks for each assessment test. Best of one will be considered for the internal assessment of 10 Marks.

Cycle I: 1, 2, 3, 4, 5 and 6.

Cycle II: 7, 8, 9, 10, 11 and 12.

SCHEME OF EVALUATION

PART	DESCRIPTION	MARKS
А	Procedure	10
В	Marking	20
С	Execution	20
	TOTAL	50

 CA 3: Practical document should be maintained for every exercise immediately after completion of the practice. The same should be evaluated for 10 Marks. The total marks awarded should be converted to 10 Marks for the internal assessment. The practical document should be submitted for the Practical Test and End Semester Examination with a bonafide certificate

The details of the documents to be prepared as per the instruction below.

Each exercise should be completed on the day of practice. The same shall be evaluated for 10 marks on the day or next day of practice before commencement of the next exercise.

1091233420	Components of Aircraft Structures Practical	L	Т	Р	С
PRACTICAL	Components of Afficiant Structures Fractical	0	0	6	3

This documentation can be carried out in a separate notebook or printed manual or in a file with the documents. The procedure and sketch should be written by the student manually.

The detailed date of the practices and its evaluations should be maintained in the course logbook. The logbook and the practical documents should be submitted for the verification by the Flying Squad and DOTE Official.

• CA 4: All the exercises should be completed and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test (CA4) should be conducted as per the scheme of evaluation as below. The marks awarded should be converted to 20 Marks for the internal assessment.

SCHEME OF EVALUATION

Part	Description	Marks
А	Procedure	10
В	Marking	20
С	Dimensioning	20
D	Execution	20
Е	Result	20
F	Viva Voice	10
	TOTAL MARKS	100

1091233420	Components of Aircraft Structures Practical	L	Т	Р	С
PRACTICAL	Components of Afficiant Structures Fractical	0	0	6	3

Syllabus Contents

Exercise No.	Description	Period
1	Sheet metal marking, cutting, sheet metal structural defects	10
2	Practice of 1st model. Butt Joint and inspect	5
3	Practice of 2nd model. Lap Joint and inspect	5
4	Practice of 3rd model. V-Joint and inspect	5
5	Practice of 3rd model. T-Joint and inspect	5
6	Demonstration of 2nd model- Radius Gauge	5
7	Soldering Exercises, inspection and defects	8
8	Cable splicing and swaging	5
9	Taps and Dies, thread cutting and inspection	8
10	Detection of defects in aluminium material and structures	8
11	Simple repair of Composite and non-metallic materials and structures	8
12	Repair of aluminium structures	8
	Practice + Test + Revision	10
	Total	90

1091233420	Components of Aircraft Structures Practical	L	Т	Р	С
PRACTICAL	Components of Aircraft Structures Practical	0	0	6	3

Suggested List of Students Activity:

Engaging in group discussions to delve into the theoretical dimensions .

Presenting lab and project findings to foster knowledge reinforcement and polish communication skills.

Analyzing industrial case studies to connect theoretical learning with practical applications in real-world scenarios.

Participating in guest lectures and workshops to gain insights from industry experts and learn about critical diagnostic tests for equipment maintenance

END SEMESTER EXAMINATION – PRACTICAL EXAM. BOARD EXAMINATIONS

Note:

- All the exercises have to be completed, any one exercise will be given for examination.
- All the exercises should be given in the question paper. The student is allowed to select
 by lot or question papers issued by the DOTE Exam section shall be used.
- Practical documents along with the activity report should be submitted for the End Semester Examinations.

DETAILED ALLOCATION OF MARKS.

Part	Description	Marks
Α	Procedure	10
В	Marking	20
С	Dimensioning	20
D	Execution	20
Е	Result	20
F	Viva Voice	10
	TOTAL MARKS	100

1091233420	Components of Aircraft Structures Practical	L	Т	Р	С
PRACTICAL	Components of Aircraft Structures Practical	0	0	6	3

Equipment / Facilities required conducting the Practical Course.

S.No	Name of the Equipment's	Quantity Required
1.	Set of basic tools for dismantling and assembly	1 set
2.	NDT equipment	1
3.	Micrometers, depth gauges, vernier callipers	2 each
4.	Shear cutter pedestal type	1
5.	Drilling Machine	1
6.	Bench Vices	5
7.	Radius Bend bars	1
8.	Pipe Flaring Tools	1
9.	Welding machine	1
10.	Glass fibre, epoxy resin	1

1092233520	Material and Testing Processes Practical	L	Т	Р	С
PRACTICAL	Material and Testing Processes Practical	0	0	6	3

Introduction:

The high strength over weight ratio of materials required in Aeronautical Engineering, calls for study of sub materials by students at this stage. The need for surface treatments against corrosion and for improved strengths is essential. In this regard, various processes of manufacturing are studied in this subject by the students.

Course Objectives:

To Study the basic knowledge of Aircraft Material Ferrous & Non-Ferrous

To study about aerospace fasteners like Bolts, studs and screws & locking devices and Aircraft rivets.

To study the new class of composite materials and its testing methods.

Course Outcomes:

CO1: Understand the mechanical testing procedures for different properties of metal

CO2: Exposure to the fabrication of Composite Materials

CO3: Understand the composite material testing procedures.

CO4: Exposure to the joining of composite by room temperature adhesive bonding.

CO5: Understand the drilling & reaming process for aircraft structural assembly

Pre-requisites:

NIL

1092233520	Motorial and Tooting Dragges Dragtical	L	Т	Р	С
PRACTICAL	Material and Testing Processes Practical	0	0	6	3

CO/PO Mapping

CO / PO	P01	P02	P03	P04	P05	P06	P07
CO1	2	1	1	3	-	-	2
C02	2	2	1	3	-	-	2
C03	2	2	2	3	-	-	3
C04	2	2	2	3	-	-	2
C05	2	2	-	3	1	-	-

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

Instructional Strategy:

- It is advised that teachers make the learning experience more engaging by introducing innovative and interesting ways of teaching.
- The teachers need to expose the student to material in multiple modes help them learn it faster and retain it longer.
- Incorporate technology tools and resources, such as online platforms, interactive
 multimedia, and virtual communication tools, to enhance engagement and provide
 additional practice opportunities.
- Throughout the course, a theory-demonstrate-practice-activity strategy may be used to ensure that learning is outcome and employability based.
- Seminars: Host seminars where students present their findings from Swinburne's test and performance curve analyses.
- Group Discussions: Facilitate discussions on the results and implications of these tests for real-world applications.
- Simulation Software: Utilize simulation software to model and analyze the operation

1092233520	Motorial and Tooting Dragges Dragtical	L	Т	Р	С
PRACTICAL	Material and Testing Processes Practical	0	0	6	3

- Guest Lectures: Invite industry experts to talk about the latest technologies and trends in motor drives and their applications in robotics and automation.
- This strategy aims to blend theoretical knowledge with practical skills, preparing students for real-world engineering challenges. It encourages active learning, critical thinking, and collaboration among students, essential skills for future engineers.
- Preparation: Before each class, ensure all equipment is functional and safety protocols are in place.
- Assessment: Evaluate students through quizzes, lab reports, and presentations on their understanding and analysis of the experiments.

Assessment Methodology:

	С	ontinuous Asses	sment (40 mark	s)	End Semester
	CA1	CA2	CA3	CA4	Examination (60 marks)
Mode	Practical Test	Practical Test	Practical Document	Practical Test	Practical Examination
Portion	First Cycle	Second Cycle	All Exercises	All Exercises	All Exercises
Duration	2 Periods	2 Periods	Regularly	3 Hours	3 Hours
Exam Marks	50	50	100	100	100
Converted to	10	10	10	20	60
Marks	1	0	10	20	60
Tentative Schedule	7th Week	14th Week	15th Week	16th Week	

1092233520	Material and Testing Processes Practical	L	Т	Р	С
PRACTICAL	Material and Testing Processes Practical	0	0	6	3

Note:

 CA1 and CA2: All the exercises/experiments as per the portions mentioned above should be completed and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation as below. The marks awarded will be converted to 10 Marks for each assessment test. Best of one will be considered for the internal assessment of 10 Marks.

Cycle I: 1, 2, 3, 4, 5 and 6.

Cycle II: 7, 8, 9, 10, 11 and 12.

SCHEME OF EVALUATION

PART	DESCRIPTION	MARKS
Α	Procedure	10
В	Tabulation / Marking	20
С	Calculation / Dimensioning	20
	TOTAL	50

• CA 3: Practical document should be maintained for every exercise immediately after completion of the practice. The same should be evaluated for 10 Marks. The total marks awarded should be converted to 10 Marks for the internal assessment. The practical document should be submitted for the Practical Test and End Semester Examination with a bonafide certificate

The details of the documents to be prepared as per the instruction below.

Each exercise should be completed on the day of practice. The same shall be evaluated for 10 marks on the day or next day of practice before commencement of the next exercise.

1092233520	Material and Testing Processes Practical	L	Т	Р	С
PRACTICAL		0	0	6	3

This documentation can be carried out in a separate notebook or printed manual or in a file with the documents. The procedure and sketch should be written by the student manually.

The detailed date of the practices and its evaluations should be maintained in the course logbook. The logbook and the practical documents should be submitted for the verification by the Flying Squad and DOTE Official.

• CA 4: All the exercises should be completed and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test (CA4) should be conducted as per the scheme of evaluation as below. The marks awarded should be converted to 20 Marks for the internal assessment.

SCHEME OF EVALUATION

Part	Description	Marks
А	Procedure	15
В	Tabulation / Marking	25
С	Calculation / Dimensioning	25
D	Result	25
E	Viva Voice	10
	TOTAL MARKS	100

1092233520	Material and Testing Processes Practical	L	Т	Р	С
PRACTICAL	Material and Testing Processes Practical	0	0	6	3

Syllabus Contents

Exercise No.	Description	Period
1	Testing of metal / non-metals materials for a) Tensile b) Compression c) Hardness d) Bending	10
2	Fabrication of Composite materials – a) Make 300x300mm Glass fabric with epoxy resin system with room temperature curing system. Thickness min 2mm and above.	10
3	Testing Composite laminates a) Tension b) Inter laminar shear stress (ILSS) c) Flexure Test	10
4	Single Lap Shear Strength Test. Single Lap shear strength using aluminium adherents and room temperature curable adhesives (like AV 130 + HV 998 or any commercially available adhesives)	10
5	Sheet Metal Shop a) Single row riveting exercises b) Double row riveting practice	15
6	Riveting repair by insertion a) Cutting and bending exercises on Aluminium sheets b) Pneumatic Riveting Exercise	15
	Practice + Test + Revision	10
	Total	90

1092233520	Material and Testing Processes Practical	L	Т	Р	С
PRACTICAL		0	0	6	3

Suggested List of Students Activity:

- Engaging in group discussions to delve into the theoretical dimensions.
 - Presenting lab and project findings to foster knowledge reinforcement and polish communication skills.
 - Analyzing industrial case studies to connect theoretical learning with practical applications in real-world scenarios.
 - Participating in guest lectures and workshops to gain insights from industry experts and learn about critical diagnostic tests for equipment maintenance.

END SEMESTER EXAMINATION – PRACTICAL EXAM. BOARD EXAMINATIONS

Note:

- All the exercises have to be completed, any one exercise will be given for examination.
- All the exercises should be given in the question paper. The student is allowed to select
 by lot or question papers issued by the DOTE Exam section shall be used.
- Practical documents along with the activity report should be submitted for the End Semester Examinations.

DETAILED ALLOCATION OF MARKS.

Part	Description	Marks
А	Procedure	15
В	Tabulation / Marking	25
С	Calculation / Dimensioning	25
D	Result	25
E	Viva Voice	10
	TOTAL MARKS	100

1092233520	Material and Testing Processes Practical	L	Т	Р	С
PRACTICAL	Material and Testing Processes Practical	0	0	6	3

Equipment / Facilities required conducting the Practical Course.

S.No	Name of the Equipment's	Quantity Required
1.	Universal Tensile Testing machine	1
2.	Torsion Testing Machine	1
3.	Brinell Hardness Testing Machine	1
4.	Shear cutter pedestal type	1
5.	Riveting gun mechanical	2
6.	Riveting gun pneumatic	1
7.	Bench Vices	5
8.	Radius Bend bars	1

1092233620	Aerodynamics Practical	L	Т	Р	С
PRACTICAL	Aerodynamics Practical	0	0	6	3

Introduction:

Students should have knowledge of aircraft structures, as it is the structure of the aircraft that carries and takes on the weight as well as all aerodynamic loads under different engines as well as operating conditions.

This course gives exposure and basic knowledge of structural requirements of all lift surfaces, fuselage, landing gear and control surfaces of an aircraft. This will help students to correlate and understand the aerodynamics loads and their affects on the structures, better. This also helps students to acquire good skills in servicing and maintenance of these structures.

Students should be physically shown at least lifting and control surfaces structures along with landing gear systems sufficient practice should be given to gent students familiarized with these structures

Course Objectives:

The objective of this course is to enable the student to To Study the basic knowledge of Introduction to Aircraft Structures, Airframe Structures – Aeroplane, Stabilizers, Flight Control Surfaces, Nacelles/Pylons.

Course Outcomes:

CO 1: Understand the angle of attack for lift and stall.

CO 2: Understand the different angle of attack and its effects.

CO 3: Exposure of airflow effect on the lifting surfaces

CO 4: Exposure to the Calibration of a Pitot Static System

CO 5: Understand the fluid flow effect on the aerofoil surface

Pre-requisites:

NIL

1092233620	Aerodynamics Practical	L	Т	Р	С
PRACTICAL	Aerodynamics Practical	0	0	6	3

CO/PO Mapping

CO / PO	P01	P02	P03	P04	P05	P06	P07
CO1	2	1	1	3	-	-	2
CO2	2	2	1	3	-	-	2
C03	2	2	2	3	-	-	3
CO4	2	2	2	3	-	-	2
C05	2	2	-	3	1	-	-

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

Instructional Strategy:

- It is advised that teachers make the learning experience more engaging by introducing innovative and interesting ways of teaching.
- The teachers need to expose the student to material in multiple modes help them learn it faster and retain it longer.
- Incorporate technology tools and resources, such as online platforms, interactive
 multimedia, and virtual communication tools, to enhance engagement and provide
 additional practice opportunities.
- Throughout the course, a theory-demonstrate-practice-activity strategy may be used to ensure that learning is outcome and employability based.
- Seminars: Host seminars where students present their findings from Swinburne's test and performance curve analyses.
- Group Discussions: Facilitate discussions on the results and implications of these tests for real-world applications.
- Simulation Software: Utilize simulation software to model and analyze the operation

1092233620	Aerodynamics Practical	L	Т	Р	С
PRACTICAL	Aerodynamics Practical	0	0	6	3

- Guest Lectures: Invite industry experts to talk about the latest technologies and trends in motor drives and their applications in robotics and automation.
- This strategy aims to blend theoretical knowledge with practical skills, preparing students for real-world engineering challenges. It encourages active learning, critical thinking, and collaboration among students, essential skills for future engineers.
- Preparation: Before each class, ensure all equipment is functional and safety protocols are in place.
- Assessment: Evaluate students through quizzes, lab reports, and presentations on their understanding and analysis of the experiments.

Assessment Methodology:

	С	ontinuous Asses	sment (40 mark	s)	End Semester
	CA1	CA2	CA3	CA4	Examination (60 marks)
Mode	Practical Test	Practical Test	Practical Document	Practical Test	Practical Examination
Portion	First Cycle	Second Cycle	All Exercises	All Exercises	All Exercises
Duration	2 Periods	2 Periods	Regularly	3 Hours	3 Hours
Exam Marks	50	50	100	100	100
Converted to	10	10	10	20	60
Marks	10		10	20	60
Tentative Schedule	7th Week	14th Week	15th Week	16th Week	

1092233620	Aerodynamics Practical	L	Т	Р	С
PRACTICAL	Aerodynamics Fractical	0	0	6	3

Note:

 CA1 and CA2: All the exercises/experiments as per the portions mentioned above should be completed and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation as below. The marks awarded will be converted to 10 Marks for each assessment test. Best of one will be considered for the internal assessment of 10 Marks.

Cycle I: 1, 2, 3 and 4. Cycle II: 5, 6, 7 and 8.

SCHEME OF EVALUATION

PART	DESCRIPTION	MARKS
А	Procedure	15
В	Tabulation	15
С	Calculation	20
	TOTAL	50

 CA 3: Practical document should be maintained for every exercise immediately after completion of the practice. The same should be evaluated for 10 Marks. The total marks awarded should be converted to 10 Marks for the internal assessment. The practical document should be submitted for the Practical Test and End Semester Examination with a bonafide certificate

The details of the documents to be prepared as per the instruction below.

Each exercise should be completed on the day of practice. The same shall be evaluated for 10 marks on the day or next day of practice before commencement of the next exercise.

1092233620	Aerodynamics Practical	L	Т	Р	С
PRACTICAL	Aerodynamics Practical	0	0	6	3

This documentation can be carried out in a separate notebook or printed manual or in a file with the documents. The procedure and sketch should be written by the student manually.

The detailed date of the practices and its evaluations should be maintained in the course logbook. The logbook and the practical documents should be submitted for the verification by the Flying Squad and DOTE Official.

• CA 4: All the exercises should be completed and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test (CA4) should be conducted as per the scheme of evaluation as below. The marks awarded should be converted to 20 Marks for the internal assessment.

SCHEME OF EVALUATION

Part	Description	Marks
А	Procedure	15
В	Tabulation	15
С	Calculation	20
D	Execution	25
E	Result	20
	TOTAL MARKS	100

1092233620	Aerodynamics Practical	L	Т	Р	С
PRACTICAL	Aerodynamics Practical	0	0	6	3

Syllabus Contents

Exercise	Description	Period
No.		
1	Fabricate Aerofoil Model - Understanding associated terms	10
2	Effect of angle of attack and airflow velocity on lift and Stalling	10
3	Servicing of flow over streamlined bodies with different angle of attack by flow visualization technique	10
4	Identifying High lift devices and practical understanding of their effect on lift with respect to aircraft speed (Air flow)	10
5	Removal / installation of Pitot Static Instruments	15
6	Calibration of a Pitot Static System using a Pitot Static Leak tester	15
7	Practical study of various factors affecting lift and drag on an aerofoil.	
8	Factors affecting flow of fluid over an aerofoil surface and demonstrate the entire effect	
	Practice + Test + Revision	10
	Total	90

Suggested List of Students Activity:

- Engaging in group discussions to delve into the theoretical dimensions .
 - Presenting lab and project findings to foster knowledge reinforcement and polish communication skills.
 - Analyzing industrial case studies to connect theoretical learning with practical

1092233620	Aerodynamics Practical	L	Т	Р	С
PRACTICAL	Aerodynamics Practical	0	0	6	3

applications in real-world scenarios.

 Participating in guest lectures and workshops to gain insights from industry experts and learn about critical diagnostic tests for equipment maintenance.

END SEMESTER EXAMINATION – PRACTICAL EXAM. BOARD EXAMINATIONS

Note:

- All the exercises have to be completed, any one exercise will be given for examination.
- All the exercises should be given in the question paper. The student is allowed to select
 by lot or question papers issued by the DOTE Exam section shall be used.
- Practical documents along with the activity report should be submitted for the End Semester Examinations.

DETAILED ALLOCATION OF MARKS.

Part	Description	Marks
А	Procedure	15
В	Tabulation	15
С	Calculation	20
D	Execution	25
E	Result	20
F	Viva Voice	5
	TOTAL MARKS	100

1092233620	Aerodynamics Practical	L	Т	Р	С
PRACTICAL	Aerodynamics Practical	0	0	6	3

Equipment / Facilities required conducting the Practical Course.

S.No	Name of the Equipment's	Quantity Required
1.	Subsonic Wind tunnel	1
2.	Water tunnel	1
3.	Models (aerofoil, rough and smooth cylinder , flat plate)	5
4.	Flow measurement device	1

1091234110	Aircraft Systems	L	Т	Р	С
THEORY	Aircraft Systems	3	0	0	3

Introduction

Diploma holders in Aeronautical Engineering and Aircraft Maintenance must have a sound knowledge of various mechanical and electrical systems which go in the airframe. This subject is designed to give them an insight into typical systems so that they understand their principles of working. This would also help them in acquiring skills in maintenance of these systems.

The course will provide basic knowledge of how the systems operate, what are the services operated in these systems, their salient features etc. Further specialization will be necessary if they have to work on any one of these systems when students are inducted in service. The students should be physically shown typical systems on the aircraft and be asked to trace various components so that they get familiarized with these systems as they are installed in the aircraft.

Course Objectives

The objective of this course is to enable the student to

To Study the basic knowledge of Fuselage, Wings, Stabilizing Surfaces, Landing Gear, Flight Controls, Air-conditioning Systems, Anti-ice Systems, Fuel System.

Course Outcomes

On successful completion of this course, the student will be able to

- CO 1: Understand the significance of the Aircraft System.
- CO 2: Understand the significance and Operation of the System.
- CO 3: Describe Principles of Structure Assembly system.
- CO 4: Describe Principles of Air Frame Assembly- aero plane.
- CO 5: Understand the significance and Operation of the System.

Pre-requisites

Nil

1091234110	Aircraft Systems	L	Т	Р	С
THEORY	All Craft Systems	3	0	0	3

CO/PO Mapping

CO / PO	P01	P02	P03	P04	P05	P06	P07
C01	3	2	-	1	-	-	2
CO2	3	2	1	1	-	-	2
C03	3	2	1	1	-	-	2
CO4	3	2	-	1	-	-	2
C05	2	2	-	2	2	-	3

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

Instructional Strategy

- Engage and Motivate: Instructors should actively engage students to boost their learning confidence.
- Real-World Relevance: Incorporate relatable, real-life examples and engineering applications to help students understand and appreciate course concepts.
- Interactive Learning: Utilize demonstrations and plan interactive student activities for an engaging learning experience.
- Application-Based Learning: Employ a theory-demonstrate-practice-activity strategy throughout the course to ensure outcome-driven learning and employability.
- Simulation and Real-World Practice: Conduct demonstrations and hands-on activities in a simulated environment, transitioning to real-world scenarios when possible.
- Encourage Critical Analysis: Foster an environment where students can honestly assess experiment outcomes and analyze potential sources of error in case of discrepancies.

1091234110		L	Т	Р	С
THEORY	Aircraft Systems	3	0	0	3

- Regularly revise the core concepts of structure as they are fundamental to understanding aircraft.
- Focus on understanding the practical applications and operational principles rather than memorizing equations.
- Engage with practical lab sessions or virtual lab simulations to gain hands-on experience with this structure.

Assessment Methodology

	С	s)	End Semester		
	CA1	CA2	CA3	CA4	Examination (60 marks)
Mode	Written test (Two units)	Written test (Another Two units)	Quiz MCQ (Online / Offline)	Model Examination	Written Examination
Duration	2 Periods	2 Periods	1 Hour	3 Hours	3 Hours
Exam Marks	50	50	60	100	100
Converted to	15	15	5	20	60
Marks	15		5	20	60
Tentative Schedule	6th Week	12th Week	13-14th Week	16th Week	

CA1 and CA2: Assessment written test should be conducted for 50 Marks for two units. The marks scored will be converted to 15 Marks. Best of one will be considered for the internal assessment of 15 Marks.

1091234110		L	Т	Р	С
THEORY	Aircraft Systems	3	0	0	3

CA1and CA2, Assessment test should be conducted for two units as below.

Answer five questions (5 X 10 Marks = 50 Marks).

Eight questions will be asked, students should write Five questions. Each unit Four questions can be asked. Each question may have subdivisions. Maximum two subdivisions shall be permitted.

CA3: 60 MCQ can be asked by covering the entire portion. It may be conducted by Online / Offline. The answer scripts of every student (online / offline) for this assessment should be kept for records and future verification. The marks scored should be converted to 5 marks for the internal assessment.

CA4: Model examination should be conducted as per the end semester question pattern. The marks should be converted to 20 marks for the internal assessment.

Question Pattern:

Answer Ten questions by selecting two questions from each unit. Each question carries 10 marks each.

Four questions will be asked from every unit, students should write any two questions. The question may have two subdivisions only.

Syllabus Contents

Unit I	Fuselage	7			
stress- St system - systems	Types of construction – stress- Wings - Types of construction - structural components stress- Stabilizing surfaces - vertical,horizontal and V-tail surfaces- 'flutter- compensation system - mach trim - Landing Gear- types - locking devices and emergency extension systems - accidental retraction prevention devices - position, movement lights are indicators- nose wheel steering - wheels and tyres (limitations) - braking systems.				
Unit II	Flight Controls	7			
Primary controls: elevator, aileron and rudder - trim - mode of actuation (mechanical, hydraulic, electrical, fly-by-wire)- operation, indicators, warning devices and controls) - efforts					

1091234110	Aircraft Sustama	L	Т	Р	С
THEORY	Aircraft Systems	3	0	0	3

to transmit - Secondary controls: - leading and trailing edge lift augmentation devices - lift dumping and speed brakes - variable elevator - mode of actuation (mechanical, hydraulic, electrical, fly-by-wire) - operation, indicators, warning devices and controls).

Unit III	Hydraulics		7
----------	------------	--	---

Basic principles of hydromechanics - hydraulic fluids - schematic construction and functioning of hydraulic systems - Hydraulic system - main, standby and emergency system - operation, indicators, warning system - ancillary system - Pneumatic system - power sources- schematic construction - potential failures, warning devices - operation, indicators, warning systems - pneumatic operated systems.

Unit IV Air-conditioning systems 7

Construction, functioning, operation, indicators and warning devices - heating and cooling - temperature regulation - automatic and manual - ram air nitration - schematic construction-Anti-ice systems - operating limitations and initiation, timing of de-icing system usage - ice warning system - Pressurization - cabin altitude, maximum cabin altitude, differential pressure

UNIT V	Fuel system	7

Fuel tanks :Structural components and types - location of tanks on single-and-multi-engine aircraft - sequence and types of re-fuelling- unusable fuel Fuel feed : gravity and pressure feed - cross feed- Fuel system monitoring - erating, indicators, warning systems - fuel management (sequencing of fuel tank switching) - dipstick

Test + Revision	10
TOTAL HOURS	45

1091234110	Aircraft Systems	L	Т	Р	С
THEORY	All Craft Systems	3	0	0	3

Suggested list of Students Activity,

- Presentation/Seminars by students on any recent technological developments based on the course.
- Periodic class quizzes conducted on a weekly / fortnightly based on the course.
- Mini project that shall be an extension of any practical lab exercise to real-world application.

Text Book for Reference:

- 1. J V Casamassa and RD Bent, Jet Aircraft Power Systems, McGraw Hill.
- 2. EHJ Pallet, Automatic Flight Control, BSP Profession Books. 1993.
- 3. Civil Aircraft Inspection Procedures (CAP 459), Himalayan Books 25.
- 4. W Thomson, Thrust for Flight, Sir Issac Pitman. 1992.
- Michael J. Kroes, William A Watkins and Frank Delp, Aircraft Maintenance and Repair, McGraw Hill 1993
- 6. Airframe and Power Plant, Mechanics General Hand Book (EA-AC 65-9A), Himalayan
- 7. Airframe and Powerplant Mechanics (AC 65-15A) -Airframe Hand Book FAA.
- 8. Civil Aircraft Inspection Procedure (CAP 459) Part II Aircraft.
- 9. Aviation Maintenance Technician Hand book by FAA.
- 10. Hydraulic Servo Systems by M. GUILLON.

END SEMESTER QUESTION PATTERN - Theory Exam

Duration: 3 Hrs. Max. Marks: 100

Note: Answer Ten questions by selecting two questions from each unit. Each question carries 10 marks each.

Instruction to the Question Setters

Four questions will be asked from every unit, students should write any two questions for 10 marks. The question may have two subdivisions only.

1092234210	Aircraft Engine Propulsion	L	Т	Р	С
THEORY	All Craft Engine Propulsion	3	0	0	3

Introduction

The diploma holder in aircraft maintenance must have required knowledge and skills about the construction and maintenance of Piston Engines.

Course Objectives

To Study the basic knowledge of Fundamentals, Engine Performance, Fuel Injection System, Starting and Ignition System, Fuel Injection System, Starting and Ignition System, Fuel Injection System, Starting and Ignition System, Engine Monitoring and Ground Operation.

Course Outcomes

On successful completion of this course, the student will be able to

- CO 1: Understand the piston and turbine engine used for aircraft propulsion.
- CO 2: Understand the fuel injection system of a piston engine.
- CO 3: Describe the operating principles and applications of the inlet & compressor.
- CO 4: Describe the Operation and characteristics of different turbine blade types.
- CO 5: Understand the Power calculation and Factors affecting engine power.

Pre-requisites

Nil

1092234210	Aircraft Engine Propulsion	L	Т	Р	С
THEORY	All Craft Engine Propulsion	3	0	0	3

CO/PO Mapping

CO / PO	P01	P02	P03	P04	P05	P06	P07
C01	3	2	-	1	-	-	2
C02	3	2	1	1	-	-	2
C03	3	2	1	1	-	-	2
CO4	3	2	-	1	-	-	2
CO5	2	2	-	2	2	-	3

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

Instructional Strategy

- Engage and Motivate: Instructors should actively engage students to boost their learning confidence.
- Real-World Relevance: Incorporate relatable, real-life examples and engineering applications to help students understand and appreciate course concepts.
- Interactive Learning: Utilize demonstrations and plan interactive student activities for an engaging learning experience.
- Application-Based Learning: Employ a theory-demonstrate-practice-activity strategy throughout the course to ensure outcome-driven learning and employability.
- Simulation and Real-World Practice: Conduct demonstrations and hands-on activities in a simulated environment, transitioning to real-world scenarios when possible.

1092234210	Aircraft Engine Propulsion	L	Т	Р	С
THEORY	All Craft Engine Propulsion	3	0	0	3

- Encourage Critical Analysis: Foster an environment where students can honestly assess experiment outcomes and analyze potential sources of error in case of discrepancies.
- Regularly revise the core concepts of structure as they are fundamental to understanding aircraft.
- Focus on understanding the practical applications and operational principles rather than memorizing equations.
- Engage with practical lab sessions or virtual lab simulations to gain hands-on experience with this structure.

Assessment Methodology

	С	End Semester			
	CA1	CA2	CA3	CA4	Examination (60 marks)
Mode	Written test (Two units)	Written test (Another Two units)	Quiz MCQ (Online / Offline)	Model Examination	Written Examination
Duration	2 Periods	2 Periods	1 Hour	3 Hours	3 Hours
Exam Marks	50	50	60	100	100
Converted to	15	15	5	20	60
Marks	15		5	5 20	
Tentative Schedule	6th Week	12th Week	13-14th Week	16th Week	

1092234210	Aircraft Engine Propulsion	L	Т	Р	С
THEORY	All Craft Eligille Propulsion	3	0	0	3

CA1 and CA2: Assessment written test should be conducted for 50 Marks for two units. The marks scored will be converted to 15 Marks. Best of one will be considered for the internal assessment of 15 Marks.

CA1and CA2, Assessment test should be conducted for two units as below.

Answer five questions (5 X 10 Marks = 50 Marks).

Eight questions will be asked, students should write Five questions. Each unit Four questions can be asked. Each question may have subdivisions. Maximum two subdivisions shall be permitted.

CA3: 60 MCQ can be asked by covering the entire portion. It may be conducted by Online / Offline. The answer scripts of every student (online / offline) for this assessment should be kept for records and future verification. The marks scored should be converted to 5 marks for the internal assessment.

CA4: Model examination should be conducted as per the end semester question pattern. The marks should be converted to 20 marks for the internal assessment.

Question Pattern:

Answer Ten questions by selecting two questions from each unit. Each question carries 10 marks each.

Four questions will be asked from every unit, students should write any two questions. The question may have two subdivisions only.

1092234210	Aircraft Engine Dranulaion	L	Т	Р	С
THEORY	Aircraft Engine Propulsion	3	0	0	3

Syllabus Contents

Unit I	Fundamentals of Piston & Gas Turbine Engine				
Piston En	gine: Mechanical, thermal and volumetric efficiencies operating principles	7			
- 2 strok	e, 4 stroke, Otto and Diesel, Piston displacement and compression ratio;				
Engine configuration and firing order.					
Turbine E	ngine :Potential energy, kinetic energy, Newton's laws of motion, Braxton				
cycle; The	e relationship between force, work, power, energy, velocity, acceleration;				
Constructi	ional arrangement and operation of turbojet, turbofan, turbo shaft,				
turboprop					
Unit II	Fuel injection systems of Piston Engine				
Types, cor	nstruction and principles of operation.	7			
Starting a	nd Ignition Systems				
Starting s	ystems, pre-heat systems; Magneto types, construction and principles of				
operation;	Ignition harnesses, spark plugs; Low- and high-tension systems.				
Induction,	Exhaust and Cooling Systems of Piston Engine				
Constructi	on and operation of: induction systems including alternate air systems;				
Exhaust sy	ystems, engine cooling systems — air and liquid.				
Unit III	Inlet & Compressors for Turbine Engine				
Compress	or inlet ducts; Effects of various inlet configurations; Ice protection. Axial	7			
and centrifugal types; Constructional features and operating principles and					
applications; Methods of air flow control: bleed valves, variable inlet guide vanes,					
variable st	ator vanes, rotating stator blades; Compressor ratio.				

1092234210	Aircraft Engine Propulsion	L	Т	Р	С
THEORY	All Craft Eligille Propulsion	3	0	0	3

Unit IV	Combustion, Turbine & Exhaust Section of turbine				
Constructi	onal features and principles of operation, combustion chambers, Types of	7			
combustion chambers.					
Turbine Se	ection				
Operation	and characteristics of different turbine blade types; Blade to disk				
attachmer	nt; Nozzle guide vanes;				
Exhaust					
Constructi	onal features and principles of operation; Convergent, divergent and				
variable ar	ea nozzles; Engine noise reduction; Thrust reversers				
UNIT V	Aircraft Engine Performances				
Power cal	culation and measurement; Factors affecting engine power; Mixtures /	7			
leaning, pr	e-ignition.				
Gross thru	ust, net thrust, choked nozzle thrust, thrust distribution, resultant thrust,				
thrust horsepower, equivalent shaft horsepower, specific fuel consumption.					
	Test + Revision	10			
	TOTAL HOURS	45			

Suggested list of Students Activity,

- Presentation/Seminars by students on any recent technological developments based on the course.
- Periodic class quizzes conducted on a weekly/fortnightly based on the course.
- Mini project that shall be an extension of any practical lab exercise to real-world application

1092234210	Aircraft Engine Propulsion	L	Т	Р	С
THEORY	All Craft Engine Propulsion	3	0	0	3

Text Book for Reference:

- 1. D Mattingly, Elements of Gas Turbine Propulsion, McGraw Hill, 1st Ed., 1997.
- 2. H Cohen, G F C Rogers and H I H Sarvanmutto, Gas Turbine Theory, John Wiely.
- 3. P G Hill & C R Peterson, Mechanics and Thermodynamics of Propulsion, Additson-Wesley, 1970.
- 4. Gorden C Oates, Aircraft Propulsion Systems Technology & Design, AIAA Publication
- 5. J L Kererbrock, Aircraft Engines and Gas Turbine, MIT Press, 1991.
- 6. Airframe and Power plant Mechanics (EA-AC 65- 12A) -Power Plant Hand FAA.
- 7. Power Plant-By Bent and McKinley.
- 8. Civil Aircraft Inspection Procedure (CAP 459) Part II Aircraft.
- 9. Aircraft Propeller and Controls-by Frank Delph.
- 10. Powerplant Section Text book- (EA-ITP-P).
- 11. Aircraft Piston Engines-By Herschel Smith.
- 12. Aviation Maintenance Technician Series by Dale Crane.

1092234210	Aircraft Engine Propulsion	L	Т	Р	С
THEORY	All Craft Eligille Propulsion	3	0	0	3

END SEMESTER QUESTION PATTERN - Theory Exam

Duration: 3 Hrs. Max. Marks: 100

Note: Answer Ten questions by selecting two questions from each unit. Each question carries 10 marks each.

Instruction to the Question Setters

Four questions will be asked from every unit, students should write any two questions for 10 marks. The question may have two subdivisions only.

1091234320	Aircraft System Practical	L	Т	Р	С
PRACTICAL	All Craft System Practical	0	0	6	3

Introduction:

Students should have knowledge of aircraft structures, as it is the structure of the aircraft that carries and takes on the weight as well as all aerodynamic loads under different engine as well as operating conditions. This gives students a board understanding and appreciation of one of the important parts of mechanics of flight.

This course gives exposure and basic knowledge of structural requirements of all lift surfaces, fuselage, landing gear and control surfaces of an aircraft. This will help students to correlate and understand the aerodynamics loads and their affects on the structures, better. This also helps students to acquire good skills in servicing and maintenance of these structures.

Students should be physically shown at least lifting and control surfaces structures along with landing gear systems sufficient practice should be given to gent students familiarized with these structures

Course Objectives:

The objective of this course is to enable the student to To Study the basic knowledge of Introduction to Aircraft Structures, Airframe Structures – Aeroplane, Stabilizers, Flight Control Surfaces, Nacelles/Pylons.

Course Outcomes:

On successful completion of this course, the student will be able to

- CO 1: Understand the levelling of the aircraft.
- CO 2: Inspection of the air conditioning system of an aircraft.
- CO 3: Describe the Principles of Rigging and operational check flight control systems
- CO 4: Inspect and service the landing gear systems
- CO 5: Understand the various system like pressure, vacuum, and temperature indicator on the display panel

Pre-requisites:

NIL

1091234320	Aircraft System Practical	L	Т	Р	С
PRACTICAL	Alician System Practical	0	0	6	3

CO/PO Mapping

CO / PO	P01	P02	P03	P04	P05	P06	P07
CO1	2	1	1	3	-	-	2
CO2	2	2	1	3	-	-	2
C03	2	2	2	3	-	-	3
CO4	2	2	2	3	-	-	2
C05	2	2	-	3	1	-	-

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

Instructional Strategy:

- It is advised that teachers make the learning experience more engaging by introducing innovative and interesting ways of teaching.
- The teachers need to expose the students to material in multiple modes to help them learn it faster and retain it longer.
- Incorporate technology tools and resources, such as online platforms, interactive
 multimedia, and virtual communication tools, to enhance engagement and provide
 additional practice opportunities.
- Throughout the course, a theory-demonstrate-practice-activity strategy may be used to ensure that learning is outcome and employability-based.
- Seminars: Host seminars where students present their findings from Swinburne's test and performance curve analyses.
- Group Discussions: Facilitate discussions on the results and implications of these tests for real-world applications.
- Simulation Software: Utilize simulation software to model and analyze the operation.

1091234320	Aircraft System Practical	L	Т	Р	С	
PRACTICAL	All Claft System Fractical	0	0	6	3	

- Guest Lectures: Invite industry experts to talk about the latest technologies and trends in motor drives and their applications in robotics and automation.
- This strategy aims to blend theoretical knowledge with practical skills, preparing students for real-world engineering challenges. It encourages active learning, critical thinking, and collaboration among students, essential skills for future engineers.
- Preparation: Before each class, ensure all equipment is functional and safety protocols are in place.
- Assessment: Evaluate students through quizzes, lab reports, and presentations on their understanding and analysis of the experiments.

Assessment Methodology:

	Continuous Assessment (40 marks)					
	CA1	CA2	CA3	CA4	Examination (60 marks)	
Mode	Practical Test	Practical Test	Practical Document	Practical Test	Practical Examination	
Portion	First Cycle	Second Cycle	All Exercises	All Exercises	All Exercises	
Duration	2 Periods	2 Periods	Regularly	3 Hours	3 Hours	
Exam Marks	50	50	100	100	100	
Converted to	10	10	10	20	60	
Marks	1	0	10	20	60	
Tentative Schedule	7th Week	14th Week	15th Week	16th Week		

1091234320	Aircraft System Practical	L	Т	Р	С
PRACTICAL	All Clait System Flactical	0	0	6	3

Note:

 CA1 and CA2: All the exercises/experiments as per the portions mentioned above should be completed and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation as below. The marks awarded will be converted to 10 Marks for each assessment test. Best of one will be considered for the internal assessment of 10 Marks.

Cycle I: 1, 2, 3, 4, 5 and 6.

Cycle II: 7, 8, 9, 10, 11 and 12.

SCHEME OF EVALUATION

PART	DESCRIPTION	MARKS
А	Dismantling	15
В	Servicing	20
С	Assembling	15
	TOTAL	50

 CA 3: Practical document should be maintained for every exercise immediately after completion of the practice. The same should be evaluated for 10 Marks. The total marks awarded should be converted to 10 Marks for the internal assessment. The practical document should be submitted for the Practical Test and End Semester Examination with a bonafide certificate

The details of the documents to be prepared as per the instruction below.

Each exercise should be completed on the day of practice. The same shall be evaluated for 10 marks on the day or next day of practice before commencement of the next exercise.

1091234320		L	Т	Р	С
PRACTICAL	Aircraft System Practical	0	0	6	3

This documentation can be carried out in a separate notebook or printed manual or in a file with the documents. The procedure and sketch should be written by the student manually.

The detailed date of the practices and its evaluations should be maintained in the course logbook. The logbook and the practical documents should be submitted for the verification by the Flying Squad and DOTE Official.

• CA 4: All the exercises should be completed and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test (CA4) should be conducted as per the scheme of evaluation as below. The marks awarded should be converted to 20 Marks for the internal assessment.

SCHEME OF EVALUATION

Part	Description	Marks
А	Procedure	15
В	Dismantling	15
С	Servicing	20
D	Assembling	15
E	Report / Result	25
F	Viva Voce	10
	TOTAL MARKS	100

1091234320	A:	L	Т	Р	С
PRACTICAL	Aircraft System Practical	0	0	6	3

Syllabus Contents

Exercise No.		
1	Dismantling, servicing and reassembling of Jacking and levelling of an aircraft. Record caution, warnings and procedure	
2	Dismantling, servicing and reassembling of Locate and inspect components of air-conditioning system	
3	Dismantling, servicing and reassembling of Replace passenger seats and Check seat belts for serviceability.	10
4	Dismantling, servicing and reassembling of Rigging and operational check flight control systems	
5	Dismantling, servicing and reassembling of landing gear systems.	
6	Dismantling, servicing and reassembling of Wheel and Brake removal /installation and checking of tyre air pressure.	10
7	Dismantling, servicing and reassembling of various fire exchangers.	
8	Checking various systems like pressure, vacuum and temperature indicator on the display panel.	10
Practice + Test + Revision		10
Total		

1091234320	Airenaft Creaters Dreatical	L	Т	Р	С
PRACTICAL	Aircraft System Practical	0	0	6	3

Suggested List of Students Activity:

Engaging in group discussions to delve into the theoretical dimensions .

Presenting lab and project findings to foster knowledge reinforcement and polish communication skills.

Analyzing industrial case studies to connect theoretical learning with practical applications in real-world scenarios.

Participating in guest lectures and workshops to gain insights from industry experts and learn about critical diagnostic tests for equipment maintenance

END SEMESTER EXAMINATION – PRACTICAL EXAM. BOARD EXAMINATIONS

Note:

- All the exercises have to be completed, any one exercise will be given for examination.
- All the exercises should be given in the question paper. The student is allowed to select
 by lot or question papers issued by the DOTE Exam section shall be used.
- Practical documents along with the activity report should be submitted for the End Semester Examinations.

DETAILED ALLOCATION OF MARKS.

Part	Description	Marks
А	Procedure	15
В	Dismantling	25
С	Servicing	25
D	Assembling	25
E	Viva Voce	10
	TOTAL MARKS	100

1091234320	Airoraft System Drastical	L	Т	Р	С	
PRACTICAL	Aircraft System Practical	0	0	6	3]

Equipment / Facilities required conducting the Practical Course.

S.No	Name of the Equipment's	Quantity Required
1.	Serviceable aircraft with all systems	1
2.	Assembling and disassembling tools	1 set

1092234420	Aircraft Engine Propulsion Practical	L	Т	Р	С
PRACTICAL	All Craft Eligine Propulsion Practical	0	0	6	3

Introduction:

The diploma holder in aircraft maintenance must have required knowledge and skills about the construction and maintenance of Piston Engine.

Course Objectives:

To Study the basic knowledge of Fundamentals, Engine Performance, Fuel Injection System, Starting and Ignition System, Fuel Injection System, Starting and Ignition System, Fuel Injection System, Starting and Ignition System, Engine Monitoring and Ground Operation.

Course Outcomes:

- CO 1: Understand the assembly and disassembly of piston Engine.
- CO 2: Exposure to servicing and reassembling of the engine fuel system.
- CO 3: Understand the engine starting, ignition systems, and Engine indicating systems
- CO 4: Exposure of the components and function of the lubrication system.
- CO 5: Understand the Assembling & Disassembly, and servicing of Airframe integration of the turbine engine.

Pre-requisites:

NIL

1092234420	Aircraft Engine Propulsion Practical	L	Т	Р	С
PRACTICAL	All Craft Eligine Propulsion Practical	0	0	6	3

CO/PO Mapping

CO / PO	P01	P02	P03	P04	P05	P06	P07
C01	2	1	1	3	-	-	2
C02	2	2	1	3	-	-	2
C03	2	2	2	3	-	-	3
CO4	2	2	2	3	-	-	2
C05	2	2	-	3	1	-	-

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

Instructional Strategy:

- It is advised that teachers make the learning experience more engaging by introducing innovative and interesting ways of teaching.
- The teachers need to expose the student to material in multiple modes help them learn it faster and retain it longer.
- Incorporate technology tools and resources, such as online platforms, interactive
 multimedia, and virtual communication tools, to enhance engagement and provide
 additional practice opportunities.
- Throughout the course, a theory-demonstrate-practice-activity strategy may be used to ensure that learning is outcome and employability based.
- Seminars: Host seminars where students present their findings from Swinburne's test and performance curve analyses.
- Group Discussions: Facilitate discussions on the results and implications of these tests for real-world applications.
- Simulation Software: Utilize simulation software to model and analyze the operation

1092234420	Aircraft Engine Propulsion Practical	L	Т	Р	С
PRACTICAL	Aliciant Engine Propulsion Practical	0	0	6	3

- Guest Lectures: Invite industry experts to talk about the latest technologies and trends in motor drives and their applications in robotics and automation.
- This strategy aims to blend theoretical knowledge with practical skills, preparing students for real-world engineering challenges. It encourages active learning, critical thinking, and collaboration among students, essential skills for future engineers.
- Preparation: Before each class, ensure all equipment is functional and safety protocols are in place.
- Assessment: Evaluate students through quizzes, lab reports, and presentations on their understanding and analysis of the experiments.

Assessment Methodology:

	С	End Semester			
	CA1	CA2	CA3	CA4	Examination (60 marks)
Mode	Practical Test	Practical Test	Practical Document	Practical Test	Practical Examination
Portion	First Cycle	Second Cycle	All Exercises	All Exercises	All Exercises
Duration	2 Periods	2 Periods	Regularly	3 Hours	3 Hours
Exam Marks	60	60	100	100	100
Converted to	10	10	10	20	60
Marks	10		10	20	60
Tentative Schedule	7th Week	14th Week	15th Week	16th Week	

1092234420	Aircraft Engine Propulsion Practical	L	Т	Р	С
PRACTICAL	All Craft Eligille Propulsion Practical	0	0	6	3

Note:

 CA1 and CA2: All the exercises/experiments as per the portions mentioned above should be completed and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation as below. The marks awarded will be converted to 10 Marks for each assessment test. Best of one will be considered for the internal assessment of 10 Marks.

Cycle I: 1, 2, 3, 4 and 5. Cycle II: 6, 7, 8, 9 and 10.

SCHEME OF EVALUATION

PART	DESCRIPTION	MARKS
А	Dismantling	20
В	Servicing	20
С	Assembling	20
	TOTAL	50

 CA 3: Practical document should be maintained for every exercise immediately after completion of the practice. The same should be evaluated for 10 Marks. The total marks awarded should be converted to 10 Marks for the internal assessment. The practical document should be submitted for the Practical Test and End Semester Examination with a bonafide certificate

The details of the documents to be prepared as per the instruction below.

Each exercise should be completed on the day of practice. The same shall be evaluated for 10 marks on the day or next day of practice before commencement of the next exercise.

1092234420	Aircraft Engine Propulsion Practical	L	Т	Р	С
PRACTICAL	All Craft Eligine Propulsion Practical	0	0	6	3

This documentation can be carried out in a separate notebook or printed manual or in a file with the documents. The procedure and sketch should be written by the student manually.

The detailed date of the practices and its evaluations should be maintained in the course logbook. The logbook and the practical documents should be submitted for the verification by the Flying Squad and DOTE Official.

• CA 4: All the exercises should be completed and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test (CA4) should be conducted as per the scheme of evaluation as below. The marks awarded should be converted to 20 Marks for the internal assessment.

SCHEME OF EVALUATION

Part	Description	Marks
А	Procedure	15
В	Dismantling	25
С	Servicing	25
D	Assembling	25
E	Viva Voice	10
	TOTAL MARKS	100

1092234420	Aircraft Engine Propulsion Practical	L	Т	Р	С
PRACTICAL	All Craft Eligine Propulsion Practical	0	0	6	3

Syllabus Contents

Exercise No.	Description	Period
1	Dismantling, servicing and reassembling of various subassemblies of piston engines.	8
2	Dismantling, servicing and reassembling of engine fuel system and function of the carburetor.	8
3	Dismantling, servicing and reassembling of engine fuel injection system and electronic fuel control.	8
4	Dismantling, servicing and reassembling the Function check of magneto.	8
5	Dismantling, servicing and reassembling the Various methods of engine starting and ignition systems and Engine indicating systems.	8
6	Dismantling, servicing and reassembling of components and function of the lubrication system.	8
7	Dismantling, servicing and reassembling of various subassemblies of turbine engine.	8
8	Starting/Shut down Procedure for the gas Turbine Engine.	8
9	Assembling & Disassembling servicing of turbo engine control rigging.	8
10	Assembling & Disassembly and servicing of Airframe integration of the turbine engine.	8
	Practice + Test + Revision	10
	Total	90

1092234420	Aircraft Engine Propulsion Practical	L	Т	Р	С
PRACTICAL	All Craft Engine Propulsion Practical	0	0	6	3

Suggested List of Students Activity:

- Engaging in group discussions to delve into the theoretical dimensions .
- Presenting lab and project findings to foster knowledge reinforcement and polish communication skills.
- Analyzing industrial case studies to connect theoretical learning with practical applications in real-world scenarios.
- Participating in guest lectures and workshops to gain insights from industry experts and learn about critical diagnostic tests for equipment maintenance.

Equipment / Facilities required conducting the Practical Course.

S.No	Name of the Equipment's	Quantity Required
1.	Aircraft Piston engine & Turbo Jet Engine	1
2.	Set of basic tools for dismantling and assembly	1 set

1092234420	Aircraft Engine Propulsion Practical	L	Т	Р	С
PRACTICAL	All Craft Engine Propulsion Practical	0	0	6	3

END SEMESTER EXAMINATION – PRACTICAL EXAM. BOARD EXAMINATIONS

Note:

- All the exercises have to be completed, any one exercise will be given for examination.
- All the exercises should be given in the question paper. The student is allowed to select by lot or question papers issued by the DOTE Exam section shall be used.
- Practical documents along with the activity report should be submitted for the End Semester Examinations.

DETAILED ALLOCATION OF MARKS.

Part	Description	Marks
Α	Procedure	15
В	Dismantling	25
С	Servicing	25
D	Assembling	25
E	Viva Voice	10
	TOTAL MARKS	100

1091234520	Aero Modeling Practical Using CAD	L	Т	Р	С
PRACTICAL	Aero Modeling Practical Osing CAD	0	0	4	2

Introduction:

Students should have knowledge of aircraft structures, as it is the structure of the aircraft that carries and takes on the weight as well as all aerodynamic loads under different engines as well as operating conditions. This gives students a broad understanding and appreciation of one of the important parts of mechanics of flight.

This course gives exposure and basic knowledge of structural requirements of all lift surfaces, fuselage, landing gear and control surfaces of an aircraft. This will help students to correlate and understand the aerodynamics loads and their affects on the structures better. This also helps students to acquire good skills in servicing and maintenance of these structures.

Students should be physically shown at least lifting and control surfaces structures along with landing gear systems sufficient practice should be given to gent students familiarized with these structures

Course Objectives:

The objective of this course is to enable the student to To Study the basic knowledge of Introduction to Aircraft Structures, Airframe Structures – Aeroplane, Stabilizers, Flight Control Surfaces, Nacelles/Pylons.

Course Outcomes:

On successful completion of this course, the student will be able to

- CO 1: Understand how to draw 2D and 3D aircraft parts in ACAD software.
- CO 2: Understand how to draw the assembly drawing in ACAD software
- CO 3: Design the 3D Elements like Hex Bolt, Nut, split pin, Dome Nut etc., Using CATIA software
- CO 4: Understand the surface modelling and Design of a typical Aircraft wing Spar
- CO 5: Design the Leading edge & Leading-edge Rib of an aircraft using CATIA Software.

Pre-requisites:

NIL

1091234520	Aero Modeling Practical Using CAD	L	Т	Р	С
PRACTICAL	Aero Modelling Practical Osing CAD	0	0	4	2

CO/PO Mapping

CO / PO	P01	P02	P03	P04	P05	P06	P07
CO1	2	1	1	3	-	-	2
CO2	2	2	1	3	-	-	2
C03	2	2	2	3	-	-	3
CO4	2	2	2	3	-	-	2
C05	2	2	-	3	1	-	-

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

Instructional Strategy:

- It is advised that teachers make the learning experience more engaging by introducing innovative and interesting ways of teaching.
- The teachers need to expose the students to material in multiple modes to help them learn it faster and retain it longer.
- Incorporate technology tools and resources, such as online platforms, interactive multimedia, and virtual communication tools, to enhance engagement and provide additional practice opportunities.
- Throughout the course, a theory-demonstrate-practice-activity strategy may be used to ensure that learning is outcome and employability-based.
- Seminars: Host seminars where students present their findings from Swinburne's test and performance curve analyses.
- Group Discussions: Facilitate discussions on the results and implications of these tests for real-world applications.
- Simulation Software: Utilize simulation software to model and analyze the operation

1091234520	Aero Modeling Practical Using CAD	L	Т	Р	С
PRACTICAL	Aero Modelling Practical Osing CAD	0	0	4	2

- Guest Lectures: Invite industry experts to talk about the latest technologies and trends in motor drives and their applications in robotics and automation.
- This strategy aims to blend theoretical knowledge with practical skills, preparing students for real-world engineering challenges. It encourages active learning, critical thinking, and collaboration among students, essential skills for future engineers.
- Preparation: Before each class, ensure all equipment is functional and safety protocols are in place.
- Assessment: Evaluate students through quizzes, lab reports, and presentations on their understanding and analysis of the experiments.

Assessment Methodology:

	С	ontinuous Asses	sment (40 mark	s)	End Semester
	CA1	CA2	CA3	CA4	Examination (60 marks)
Mode	Practical Test	Practical Test	Practical Document	Practical Test	Practical Examination
Portion	First Cycle	Second Cycle	All Exercises	All Exercises	All Exercises
Duration	2 Periods	2 Periods	Regularly	3 Hours	3 Hours
Exam Marks	50	50	100	100	100
Converted to	10	10	10	20	60
Marks	1	0	10	20	60
Tentative Schedule	7th Week	14th Week	15th Week	16th Week	

1091234520	Aero Modeling Practical Using CAD	L	Т	Р	С
PRACTICAL	Aero Modelling Practical Osing CAD	0	0	4	2

Note:

 CA1 and CA2: All the exercises/experiments as per the portions mentioned above should be completed and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation as below. The marks awarded will be converted to 10 Marks for each assessment test. Best of one will be considered for the internal assessment of 10 Marks.

Cycle I: 1, 2, 3, 4 and 5. Cycle II: 6, 7, 8, 9 and 10.

SCHEME OF EVALUATION

Part	Description	Marks
А	Editing /Creation	10
В	Formatting	10
С	Assembly	10
D	Dimensioning	10
Е	Printout	5
F	Viva Voice	5
	TOTAL MARKS	50

 CA 3: Practical document should be maintained for every exercise immediately after completion of the practice. The same should be evaluated for 10 Marks. The total marks awarded should be converted to 10 Marks for the internal assessment. The practical

1091234520	Aero Modeling Practical Using CAD	L	Т	Р	С
PRACTICAL	Aero Modelling Practical Osing CAD	0	0	4	2

document should be submitted for the Practical Test and End Semester Examination with a bonafide certificate

The details of the documents to be prepared as per the instruction below.

Each exercise should be completed on the day of practice. The same shall be evaluated for 10 marks on the day or next day of practice before commencement of the next exercise.

This documentation can be carried out in a separate notebook or printed manual or in a file with the documents. The procedure and sketch should be written by the student manually.

The detailed date of the practices and its evaluations should be maintained in the course logbook. The logbook and the practical documents should be submitted for the verification by the Flying Squad and DOTE Official.

• CA 4: All the exercises should be completed and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test (CA4) should be conducted as per the scheme of evaluation as below. The marks awarded should be converted to 20 Marks for the internal assessment.

SCHEME OF EVALUATION

Part	Description	PART A	PART B
А	Editing /Creation	10	10
В	Formatting	10	10
С	Assembly	10	10
D	Dimensioning	10	10
E	Printout	5	5
F	Viva Voice	5	5
	TOTAL MARKS	50	50

1091234520	Aero Modeling Practical Using CAD	L	Т	Р	С
PRACTICAL	Aero Modelling Practical Osing CAD	0	0	4	2

Syllabus Contents

Exercise No.	Description	Period
	AutoCAD Lab	
1	Design of basic mechanical 2D diagrams using ACAD software with dimensions.	8
2	Draw an isometric view of typical aircraft using ACAD software showing all major aircraft structures.	8
3	Draw an assembly view of typical torsional box an aircraft structure using ACAD software (Using two skins, one spar and 3 ribs and assemble using aerospace fasteners)	8
4	Design of 3D drawings of basic mechanical parts in ACAD software.	8
5	Draw a typical aircraft control surface in 2D drawing using ACAD software	8
	CATIA Lab	
6	Design of Basic Mechanical 3D Elements (like Hex Bolt, Nut, split pin, Dome Nut Tap washer etc. using CATIA software.	8
7	Understanding of surface modeling and Design a typical Aircraft wing Spar in 3d model using CATIA software and estimate its weight for Aluminum and Carbon-Epoxy material.	8
8	Design a wing outer structure with winglet using CATIA software.	8
9	Design a Leading edge & Leading-edge Rib of an aircraft using CATIA Software	8

1091234520	Aero Modeling Practical Using CAD	L	Т	Р	С
PRACTICAL	Aero Modelling Practical Osing CAD	0	0	4	2

10	Design a torsional box using two skins, one spar and 3 ribs and assemble using aerospace fasteners using CATIA software			
Practice + Test + Revision				
Total				

Suggested List of Students Activity:

Engaging in group discussions to delve into the theoretical dimensions.

Presenting lab and project findings to foster knowledge reinforcement and polish communication skills.

Analyzing industrial case studies to connect theoretical learning with practical applications in real-world scenarios.

Participating in guest lectures and workshops to gain insights from industry experts and learn about critical diagnostic tests for equipment maintenance

END SEMESTER EXAMINATION – PRACTICAL EXAM. BOARD EXAMINATIONS

Note:

- All the exercises have to be completed, any one exercise will be given for examination.
- All the exercises should be given in the question paper. The student is allowed to select
 by lot or question papers issued by the DOTE Exam section shall be used.
- Practical documents along with the activity report should be submitted for the End Semester Examinations.

1091234520	Aero Modeling Practical Using CAD	L	Т	Р	С
PRACTICAL	Aero Modelling Practical Osing CAD	0	0	4	2

DETAILED ALLOCATION OF MARKS.

Part	Description	PART A	PART B
А	Editing /Creation	10	10
В	Formatting	10	10
С	Assembly	10	10
D	Dimensioning	10	10
E	Printout	5	5
F	Viva Voice	5	5
	TOTAL MARKS	50	50

Equipment / Facilities required conducting the Practical Course.

S.No	Name of the Equipment's	Quantity Required
1.	Personal computer	30
2	Printer	1
3	Required Software's CAD and Catia Package	Sufficient to the strength

1092234640	Aircraft structural repair	L	Т	Р	С
PRACTICUM	Anciait Structural Tepan	1	0	4	3

Introduction:

The diploma holder in aircraft maintenance must have required knowledge and skills about the construction and maintenance of Gas Turbine Engine. Hence this subject has been divided into two sections.

Course Objectives:

The objective of this course is to enable the student to

- To understand the use of transfer function models for analysis of physical systems and introduce the control system components.
- To provide adequate knowledge in the time response of systems and steady state error analysis.
- To accord basic knowledge in obtaining the open lop and closed-loop frequency
- responses of systems.
- To introduce stability analysis and design of compensators.
- To introduce state variable representation of physical systems.
- To Study the basic knowledge of Fundamentals, Engine Performance, Inlet, Compressors, Combustion Section, Turbine Section and Exhaust.

Course Outcomes:

On successful completion of this course, the student will be able to

- CO1: Understand the Causes of Aircraft Damage and Repair Classifications.
- CO2: Exposure of metallic and composite material, Rivets, Sealants, Primer & Paints etc
- CO3: Understand the Principles and procedures for Metallic repair
- CO4: Understand the Principles and procedures for Composite repair
- CO5: Exposure of NDI/NDT techniques currently available for qualification of repairs.

Pre-requisites:

Applied Physics, Basic Electrical and Mechanical Engineering.

1092234640	Aircraft structural repair	L	Т	Р	С
PRACTICUM	Alician Structural Tepan	1	0	4	3

CO/PO Mapping

CO / PO	P01	P02	P03	P04	P05	P06	P07
C01	3	-	-	2	3	2	3
C02	3	2	3	2	3	3	3
C03	3	-	3	3	3	3	3
C04	3	3	3	3	3	3	3
CO5	3	2	3	2	3	3	3

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

Instructional Strategy:

- Engage and Motivate: Instructors should actively engage students to boost their learning confidence.
- Real-World Relevance: Incorporate relatable, real-life examples and engineering applications to help students understand and appreciate course concepts.
- Interactive Learning: Utilize demonstrations and plan interactive student activities for an engaging learning experience.
- Application-Based Learning: Employ a theory-demonstrate-practice-activity strategy throughout the course to ensure outcome-driven learning and employability.
- Simulation and Real-World Practice: Conduct demonstrations and hands-on activities in a simulated environment, transitioning to real-world scenarios when possible.
- Encourage Critical Analysis: Foster an environment where students can honestly assess experiment outcomes and analyze potential sources of error in case of discrepancies.

1092234640	Aircraft structural repair	L	Т	Р	С
PRACTICUM	Aliciait Structural Tepali	1	0	4	3

Assessment Methodology:

	Co	ontinuous Asses	sment (40 mark	(s)	End
	CA1	CA2	CA3	CA4	Semester Examination (60 marks)
Mode	Practical Test	Practical Test	Written Test Theory	Practical Test	Practical Examination
Portion	Cycle I Experiments	Cycle II Experiments	All Units	All Experiments	All Experiments
Duration	2 Periods	2 Periods	3 Hours	3 Hours	3 hours
Exam Marks	60	60	100	100	100
Converted to	10	10	15	15	60
Marks	1	0	15	15	60
Tentative Schedule	7th Week	14th Week	15th Week	16th Week	

Note:

CA1 and CA2: All the exercises/experiments should be completed as per the portions
above and kept for the practical test. The students shall be permitted to select any one
by lot for the test. The practical test should be conducted as per the scheme of
evaluation as below. The marks awarded shall be converted to 10 Marks for each
assessment test. Best of one will be considered for the internal assessment of 10
Marks.

1092234640	Aircraft structural repair	L	Т	Р	С
PRACTICUM	Alician Structural Tepan	1	0	4	3

Practical documents should be maintained for every experiment immediately after completion of the practice. The practical document should be submitted for the practical test. The same should be evaluated for 10 Marks for each exercise/experiment. The total marks awarded should be converted to 10 Marks for the practical test as per the scheme of evaluation as below.

The details of the documents to be prepared as per the instruction below.

Each experiment should be completed on the day of practice. The same shall be evaluated for 10 marks on the day or next day of practice before commencement of the next experiment.

This documentation can be carried out in a separate notebook or a printed manual or a file with documents. The student should draw the Circuit Diagram and take readings, do calculations and prepare the Graph/Result manually in the documents.

The detailed date of the practices and its evaluations should be maintained in the course logbook. The log book and the practical documents should be submitted for the verification by the Flying Squad and DOTE Official.

SCHEME OF EVALUATION

PART	DESCRIPTION	MARKS
А	Preparation/Marking	20
В	Assembling/Fabrication	20
С	Visual inspection	10
	TOTAL	50
D	Practical Documents (As per the portions)	10
	Total Marks	60

Cycle II: 1, 2 and 3. **Cycle II:** 4, 5, 6 and 7.

1092234640	Aircraft structural repair	L	Т	Р	С
PRACTICUM	Alician Structural Tepan	1	0	4	3

 CA 3: Written Test for complete theory portions should be conducted for 100 Marks as per the question pattern below. The marks scored will be converted to 15 Marks for internal assessment.

Question pattern - Written Test Theory

Description		Mar	ks
Part - A	30 MCQ Questions.	30 X 1 Mark	30 Marks
Part - B	7 Questions to be answered out of 10 Questions.	7 X 10 Marks	70 Marks
TOTAL			100 Marks

CA 4: All the exercises/experiments should be completed and kept for the practical test.
The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation below. After completion of all the exercises the practical test should be conducted as per End Semester Examination question pattern scheme of evaluation. The marks awarded should be converted to 15 Marks for the internal assessment.

SCHEME OF EVALUATION

Model Practical Examination and End Semester Examination - Practical Exam

PART	DESCRIPTION	MARKS
А	Procedure	10
В	Preparation/Marking	20
С	Assembling/Fabrication	20
D	Visual inspection	10
E	Written Test (theory Portion)	30
F	Viva Voce	10
	TOTAL	100

Note: For the written test 30 MCQ shall be asked from the theory portions.

1092234640	Aircraft structural repair	L	Т	Р	С	
PRACTICUM	Alician Structural Tepan	1	0	4	3]

Syllabus Contents

Theory Po	ortion	
UNIT - I : I I	ntroduction to Aircraft Structural Repair	Period
Repairs. T	f aircraft Damage, Repair Classifications, Temporary and permanent Types of tools used in the structural repair. Hand tools, Drill guns, Rivet et metal tools etc.	8
UNIT - II : Repair Materials		
and comp	on to repair structural materials their structural properties. Both metallic osite material, Rivets, Sealants, Primer & Paints etc Includes ons and standards	
Practical Exercises:		
Ex.No	Name of the Experiment	Period
1.	Metallic patch repair of cracked Al. Alloy plate by Riveting.	4
2	Metallic patch repair of a cracked Al. Alloy plate using room temperature curable adhesives	
UNIT – III	: Aircraft Sheet metal Repair	
Includes s	and procedures for fuselage, wing, and empennage sheet metal repair. afety, hand tools, layout methods, materials, fasteners, repair techniques, ication, and corrosion prevention and control	
UNIT - IV :	Aircraft Composite Repair	

1092234640	Aircraft structural repair	L	Т	Р	С
PRACTICUM	Alician Structural Tepan	1	0	4	3

Introduction to Composite materials & Repair of composites, Basic Repair Process. Types of repairs. Cosmetic, Resin Injection, Semi-structural Plug/Patch, Structural Mechanically-fastened Doublers, Structural Bonded External Doublers, Structural Flush Repair, Bolted or Bonded Scaring vs. Stepping, Repair Patch. Manufacturing of method, equipment and qualification methods

Practical	Exercises:		
Ex.No	Name of the Experiment	Period	
3	Fabrication of Glass fiber epoxy laminate by vacuum bag moulding / press molding method.		
4	Demonstration of cosmetic repair on the laminates using room temperature curable adhesives (AV138 + HV998) or Commercial Araldite		
5	Composite Circular patch repair on the Al.alloy structures		
UNIT - V: Repair Qualification & Acceptance of Repair			
test, and u	Describe NDI/NDT techniques currently available, including visual inspection, tap test, and ultrasonic pulse echo inspection. Describe various post-repair acceptance inspections, including visual inspection, tap test, etc. introduction of Indian a repair certification agency		
Practical Exercises:			
Ex.No	Name of the Experiment	Period	
6	Scarf repair using glass composite on metallic structures		

1092234640	Aircraft structural repair	L	Т	Р	С
PRACTICUM	Aliciait structurar repair	1	0	4	3

7	Qualification of repairs visual inspection by coin tapping method qualitatively	
	Test + Revision	10
	Total	90

Suggested List of Students Activity:

- 1. Presentation/Seminars by students on any recent technological developments based on the course.
- 2. Periodic class quizzes conducted on a weekly/fortnightly based on the course.

Text book for Reference:

- 1. Advances in the Bonded Composite Repair of Metallic Aircraft Structure, Elsevier Science
- 2. Composite Repair: Theory and Design, Elsevier Science
- 3. Aircraft Metal Structural Repair Chapter -4 of FAA

Web-based/Online Resources:

- Composites repair -https://www.compositesworld.com/articles/composites-repair
- The ABC's of Composite Repair https://www.aviationpros.com/engines-components/aircraft-airframe-accessories/com
 posites/article/11105657/the-a-b-cs-of-aircraft-composite-repair

1092234640	Aircraft structural repair	L	Т	Р	С
PRACTICUM	Aliciait Structural Tepali	1	0	4	3

Equipment / Facilities required to conduct the Practical Course.

S.No	Name of the Equipment's	Quantity Required
1	Micrometers, depth gauges, vernier callipers	1
2	Shear cutter pedestal type	1
3	Bench vices	4
4	Rivet Guns	2
5	Al.Alloy sheet	As required
6	Different Size drill bits	As required
7	Glass fabric & epoxy resin	As required
8	Room Temperature curable adhesives	As required
9	Serviceable aircraft with all systems	1
10	Set of basic tools for disassembling and assembly	1 set

1092234640	Aircraft structural repair	L	Т	Р	С
PRACTICUM	Alician Structural Tepan	1	0	4	3

END SEMESTER EXAMINATIONS - PRACTICAL EXAM

Note:

All the exercises should be completed before the Board Practical Examinations. End Semester Practical examination should be conducted for all the exercises / experiments for 100 Marks. Students will be permitted to select any one exercise by lot or question paper supplied by the DOTE Exam section shall be used. The record of work done by the student should be submitted with a Bonafide Certificate.

SCHEME OF EVALUATION

PART	DESCRIPTION	MARKS
А	Procedure	10
В	Preparation/Marking	20
С	Assembling/Fabrication	20
D	Visual inspection	10
Е	Written Test (theory Portion)	30
F	Viva Voce	10
	TOTAL	100

Note: For the written test 30 MCQ shall be asked from the theory portions.

1091235110	UAV System Design	L	Т	Р	С
THEORY	OAV System Design	4	0	0	4

Introduction

The course, aimed at an interdisciplinary group of students, covers the whole design cycle for a multirotor UAV, from conceptual design to in-flight validation, with specific reference to modelling, simulation, identification and control. The students will acquire knowledge and skill in the flying of UAV and controls of UAV. The teaching is to be practice oriented.

Course Objectives

The objective of this course is to enable the student to

To Study the basic knowledge of Unmanned Aerial Vehicle (UAV).

To learn about different raw materials used in the fabrication of UAV.

To get exposure to the avionics hardware used in autopilot.

To understand the different communication systems used in the UAV.

To learn about way point navigation systems used in the UAV.

Course Outcomes

On successful completion of this course, the student will be able to

CO1: Understand the history, classification, terminology, models, prototypes, and applications of UAVs.

CO2: Explain airframe dynamics, modelling, structures, wing design, engine types, equipment maintenance, management, and control surfaces.

CO3: Describe avionics hardware such as autopilot, sensors (AGL, pressure, accelerometer, gyros), servos, actuators, power supply, processor, integration, installation, configuration, and testing.

CO4: Analyse and integrate communication payloads, telemetry, controls, feedback systems, sensors, displays, and simulation for UAV operation and troubleshooting".

CO5: Explore path planning, MAV, waypoints navigation, ground control software, recent trends in UAVs, and case studies.

1091235110	UAV System Design	L	Т	Р	С
THEORY	OAV System Design	4	0	0	4

Pre-requisites

Nil

CO/PO Mapping

CO / PO	P01	P02	P03	P04	P05	P06	P07
C01	3	-	-	-	1	-	1
C02	3	2	-	2	-	-	-
C03	3	2	2	2	-	-	-
CO4	3	3	2	2	-	-	-
C05	3	2	2	-	-	1	-

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

Instructional Strategy

- Engage and Motivate: Instructors should actively engage students to boost their learning confidence.
- Real-World Relevance: Incorporate relatable, real-life examples and engineering applications to help students understand and appreciate course concepts.
- Interactive Learning: Utilize demonstrations and plan interactive student activities for an engaging learning experience.
- Application-Based Learning: Employ a theory-demonstrate-practice-activity strategy throughout the course to ensure outcome-driven learning and employability.
- Simulation and Real-World Practice: Conduct demonstrations and hands-on activities in a simulated environment, transitioning to real-world scenarios when possible.

1091235110	UAV System Design	L	Т	Р	С
THEORY	OAV System Design	4	0	0	4

- Encourage Critical Analysis: Foster an environment where students can honestly assess experiment outcomes and analyze potential sources of error in case of discrepancies.
- Regularly revise the core concepts of structure as they are fundamental to understanding aircraft.
- Focus on understanding the practical applications and operational principles rather than memorizing equations.
- Engage with practical lab sessions or virtual lab simulations to gain hands-on experience with this structure.

Assessment Methodology

	С	s)	End Semester Examination		
	CA1	CA2	CA3	CA4	(60 marks)
Mode	Written test (Two units)	Written test (Another Two units)	Quiz MCQ (Online / Offline)	Model Examination	Written Examination
Duration	2 Periods	2 Periods	1 Hour	3 Hours	3 Hours
Exam Marks	50	50	60	100	100
Converted to	15	15	5	20	60
Marks	1	5	5	20	60
Tentative Schedule	6th Week	12th Week	13-14th Week	16th Week	

1091235110	UAV System Design	L	Т	Р	С
THEORY	OAV System Design	4	0	0	4

CA1 and CA2: Assessment written test should be conducted for 50 Marks for two units. The marks scored will be converted to 15 Marks. Best of one will be considered for the internal assessment of 15 Marks.

CA1and CA2, Assessment test should be conducted for two units as below.

Answer five questions (5 X 10 Marks = 50 Marks).

Eight questions will be asked, students should write Five questions. Each unit Four questions can be asked. Each question may have subdivisions. Maximum two subdivisions shall be permitted.

CA3: 60 MCQ can be asked by covering the entire portion. It may be conducted by Online / Offline. The answer scripts of every student (online / offline) for this assessment should be kept for records and future verification. The marks scored should be converted to 5 marks for the internal assessment.

CA4: Model examination should be conducted as per the end semester question pattern. The marks should be converted to 20 marks for the internal assessment.

Question Pattern:

Answer Ten questions by selecting two questions from each unit. Each question carries 10 marks each.

Four questions will be asked from every unit, students should write any two questions. The question may have two subdivisions only.

Syllabus Contents

Unit I	INTRODUCTION TO UAV	10		
History of UAV – classification – basic terminology - models and prototypes – applications.				
Unit II	BASICS OF AIRFRAME	10		
Airframe – dynamics – modeling - structures – wing design - engines types - equipment maintenance and management - control surfaces - specifications.				

1091235110	UAV System Design	L	Т	Р	С
THEORY	OAV System Design	4	0	0	4

Unit III	AVIONICS HARDWARE					
Autopilot – AGL - pressure sensors - servos - accelerometer – gyros - actuators - supply processor, integration, installation, configuration, and testing.						
Unit IV COMMUNICATION PAYLOADS AND CONTROLS						
frequency flight con	Payloads - Telemetry - tracking - Aerial photography - controls - PID feedback - radio control frequency range - SAS - flight director - commands and videos - elements of control loops flight computer sensor - displays - parameter settings - modems - memory system simulation - ground test - analysis troubleshooting.					
UNIT V PATH PLANNING AND MAV						
Waypoints navigation - ground control software - Recent trends in UAV - Case Studies.						
Test + Revision						
TOTAL HOURS						

Suggested list of Students Activity,

- Presentation/Seminars by students on any recent technological developments based on the course.
- Periodic class quizzes conducted on a weekly / fortnightly based on the course.
- Mini project that shall be an extension of any practical lab exercise to real-world application.

Text Book for Reference:

- Jane's Unmanned Aerial Vehicles and Targets, Jane's Information Group; ASIN:
 0710612575,1999
- 2. R. Said and H. Chayeb, "Power supply system for UAV", KTH, 2002.

1091235110	UAV System Design	L	Т	Р	С
THEORY	OAV System Design	4	0	0	4

- 3. Robert C. Nelson, Flight Stability and Automatic Control, McGraw-Hill, Inc, 1998.
- 4. Skafidas, "Microcontroller Systems for a UAV", KTH, TRITA-FYS 2002:51 ISSN 0280-316 X.34, 2002
- 5. Kimon P. Valavanis, "Advances in Unmanned Aerial Vehicles: State of the Art and the Roadto Autonomy", Springer, 2007
- Paul G Fahlstrom, Thomas J Gleason, "Introduction to UAV Systems", UAV Systems, Inc,1998.
- 7. Dr. Armand J. Chaput, "Design of Unmanned Air Vehicle Systems", Lockheed MartinAeronautics Company, 2001
- 8. P.J.Swatton, "Ground studies for pilots' flight planning", Sixth edition, 2002.

END SEMESTER QUESTION PATTERN - Theory Exam

Duration: 3 Hrs. Max. Marks: 100

Note: Answer Ten questions by selecting two questions from each unit. Each question carries 10 marks each.

Instruction to the Ouestion Setters

Four questions will be asked from every unit, students should write any two questions for 10 marks. The question may have two subdivisions only.

1092235210	Aircraft Maintenance Engineering	L	Т	Р	С
THEORY	All Craft Maintenance Engineering	4	0	0	3

Introduction

The subject deals with the maintenance concepts and practices in the general and as applicable to aeronautical fields. The students will acquire knowledge and skill in the maintenance of aircraft and its system, organization required controls and economics of maintenance. The teaching is to be practice oriented.

Course Objectives

To Study the basic knowledge of Safety Precautions-Aircraft, Corrosion, Welding, Brazing, Soldering and Bonding, Disassembly, Inspection, Repair and Assembly Techniques, Maintenance Procedures and Bearings, Transmission, Control Cables.

Course Outcomes

On successful completion of this course, the student will be able to

- CO 1: Understand safe working practices and precautions.
- CO 2: Understand the significance of different joining methods used in the structural assembly.
- CO3: Describe types of defects and visual inspection techniques.
- CO 4: Describe the Principles of Non-destructive inspection techniques for metals.
- CO 5: Understand the significance of bearings, loads, materials, and their construction.

Pre-requisites

Nil

1092235210	Aircraft Maintenance Engineering	L	Т	Р	С
THEORY	All Craft Maintenance Engineering	4	0	0	3

CO/PO Mapping

CO / PO	P01	P02	P03	P04	P05	P06	P07
C01	3	2	-	1	-	-	2
C02	3	2	1	1	-	-	2
C03	3	2	1	1	-	-	2
CO4	3	2	-	1	-	-	2
CO5	2	2	-	2	2	-	3

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

Instructional Strategy

- Engage and Motivate: Instructors should actively engage students to boost their learning confidence.
- Real-World Relevance: Incorporate relatable, real-life examples and engineering applications to help students understand and appreciate course concepts.
- Interactive Learning: Utilize demonstrations and plan interactive student activities for an engaging learning experience.
- Application-Based Learning: Employ a theory-demonstrate-practice-activity strategy throughout the course to ensure outcome-driven learning and employability.
- Simulation and Real-World Practice: Conduct demonstrations and hands-on activities in a simulated environment, transitioning to real-world scenarios when possible.

1092235210	Aircraft Maintenance Engineering	L	Т	Р	С
THEORY	All Craft Maintenance Engineering	4	0	0	3

- Encourage Critical Analysis: Foster an environment where students can honestly assess experiment outcomes and analyze potential sources of error in case of discrepancies.
- Regularly revise the core concepts of structure as they are fundamental to understanding aircraft.
- Focus on understanding the practical applications and operational principles rather than memorizing equations.
- Engage with practical lab sessions or virtual lab simulations to gain hands-on experience with this structure.

Assessment Methodology

	С	ontinuous Asses	sment (40 marks	s)	End Semester
	CA1	CA2	CA3	CA4	Examination (60 marks)
Mode	Written test (Two units)	Written test (Another Two units)	Quiz MCQ (Online / Offline)	Model Examination	Written Examination
Duration	2 Periods	2 Periods	1 Hour	3 Hours	3 Hours
Exam Marks	50	50	60	100	100
Converted to	15	15	5	20	60
Marks	1	5	5	20	60
Tentative Schedule	6th Week	12th Week	13-14th Week	16th Week	

1092235210	Aircraft Maintenance Engineering	L	Т	Р	С
THEORY	Ancialt Maintenance Engineering	4	0	0	3

CA1 and CA2: Assessment written test should be conducted for 50 Marks for two units. The marks scored will be converted to 15 Marks. Best of one will be considered for the internal assessment of 15 Marks.

CA1and CA2, Assessment test should be conducted for two units as below.

Answer five questions (5 X 10 Marks = 50 Marks).

Eight questions will be asked, students should write Five questions. Each unit Four questions can be asked. Each question may have subdivisions. Maximum two subdivisions shall be permitted.

CA3: 60 MCQ can be asked by covering the entire portion. It may be conducted by Online / Offline. The answer scripts of every student (online / offline) for this assessment should be kept for records and future verification. The marks scored should be converted to 5 marks for the internal assessment.

CA4: Model examination should be conducted as per the end semester question pattern. The marks should be converted to 20 marks for the internal assessment.

Question Pattern:

Answer Ten questions by selecting two questions from each unit. Each question carries 10 marks each.

Four questions will be asked from every unit, students should write any two questions. The question may have two subdivisions only.

Syllabus Contents

Unit I	Safety Precautions-Aircraft				
Aspects of safe working practices including precautions to take when working with					
electricity, gases especially oxygen, oils and chemicals; Instructions on the remedial					
action to be taken in the event of a fire or another accident with one or more of these					
hazards incl	uding knowledge on extinguishing agents.				

1092235210	Aircraft Maintenance Engineering	L	Т	Р	С
THEORY	All Craft Maintenance Engineering	4	0	0	3

Unit II	Corrosion	
a) Chemica	fundamentals; Formation by, galvanic action process, microbiological,	7
stress;		
(b) Types o	f corrosion and their identification; Causes of corrosion; Material types,	
susceptibilit	y to corrosion.	
Welding, Bra	azing, Soldering and Bonding	
(a) Soldering	g methods; inspection of soldered joints.	
(b) Welding	and brazing methods; Inspection of welded and brazed joints; Bonding	
methods an	d inspection of bonded joints	
Unit III	Disassembly, Inspection, Repair and Assembly Techniques	
(a) Types	of defects and visual inspection techniques. Corrosion	7
removal,ass	essment and re-protection.	
(b) General	repair methods, Structural Repair Manual; Ageing, fatigue and corrosion	
control prog	rams;	
(c) Non-de	structive inspection techniques including, penetrate, radiographic,	
eddyCurrent	, ultrasonic and borescope methods.	
(d) Disasser	nbly and reassembly techniques.	
(e) Troubles	hooting techniques	
Maintenand	e Procedures	
Maintenanc	e planning; Modification procedures; Stores procedures;	
Certification	/release procedures; Interface with aircraft operation;	
Maintenanc	eInspection/Quality Control/Quality Assurance; Additional maintenance	
procedures;	Control of life limited component	

1092235210	Aircraft Maintenance Engineering	L	Т	Р	С
THEORY	All Craft Maintenance Engineering	4	0	0	3

Purpose of bearings, loads, material, construction; Types of bearings and their Application. Testing, cleaning and inspection of bearings; Lubrication requirementsOf bearings; Defects in bearings and their causes. Transmissions Gear types and their application; Gear ratios, reduction and multiplication gear systems, driven and driving gears, idler gears, mesh patterns; Belts and pulleys,Chains and sprockets. Inspection of gears, backlash; Inspection of belts and pulleys, chains and sprockets; Inspection of screw jacks, lever devices, push-pull rod Systems. Control Cables Types of cables; End fittings, turnbuckles and compensation devices; Pulleys and cable system components; Bowden cables; Aircraft flexible control systems. Swaging of end fittings; Inspection and testing of control cables; Bowden cables; Aircraft flexible control systems. UNIT V Pipes and Unions (a) Identification of, and types of rigid and flexible pipes and their connectors used in aircraft; (b) Standard unions for aircraft hydraulic, fuel, oil, pneumatic and air system pipes. Pipes and Hoses: Bending and belling/flaring aircraft pipes; Inspection and testing of aircraft pipes and hoses; Installation and clamping of pipes. Springs: Types of springs, materials, characteristics and applications. Inspection and testing of springs.	nit IV	Bearings					
Application. Testing, cleaning and inspection of bearings; Lubrication requirementsOf bearings; Defects in bearings and their causes. Transmissions Gear types and their application; Gear ratios, reduction and multiplication gear systems, driven and driving gears, idler gears, mesh patterns; Belts and pulleys, Chains and sprockets. Inspection of gears, backlash; Inspection of belts and pulleys, chains and sprockets; Inspection of screw jacks, lever devices, push-pull rod Systems. Control Cables Types of cables; End fittings, turnbuckles and compensation devices; Pulleys and cable system components; Bowden cables; Aircraft flexible control systems. Swaging of end fittings; Inspection and testing of control cables; Bowden cables; Aircraft flexible control systems. UNIT V Pipes and Unions (a) Identification of, and types of rigid and flexible pipes and their connectors used in aircraft; (b) Standard unions for aircraft hydraulic, fuel, oil, pneumatic and air system pipes. Pipes and Hoses: Bending and belling/flaring aircraft pipes; Inspection and testing of aircraft pipes and hoses; Installation and clamping of pipes. Springs: Types of springs, materials, characteristics and applications. Inspection and testing of springs.							
Transmissions Gear types and their application; Gear ratios, reduction and multiplication gear systems, driven and driving gears, idler gears, mesh patterns; Belts and pulleys, Chains and sprockets. Inspection of gears, backlash; Inspection of belts and pulleys, chains and sprockets; Inspection of screw jacks, lever devices, push-pull rod Systems. Control Cables Types of cables; End fittings, turnbuckles and compensation devices; Pulleys and cable system components; Bowden cables; Aircraft flexible control systems. Swaging of end fittings; Inspection and testing of control cables; Bowden cables; Aircraft flexible control systems. UNIT V Pipes and Unions (a) Identification of, and types of rigid and flexible pipes and their connectors used in aircraft; (b) Standard unions for aircraft hydraulic, fuel, oil, pneumatic and air system pipes. Pipes and Hoses: Bending and belling/flaring aircraft pipes; Inspection and testing of aircraft pipes and hoses; Installation and clamping of pipes. Springs: Types of springs, materials, characteristics and applications. Inspection and testing of springs.	-						
Transmissions Gear types and their application; Gear ratios, reduction and multiplication gear systems, driven and driving gears, idler gears, mesh patterns; Belts and pulleys, Chains and sprockets. Inspection of gears, backlash; Inspection of belts and pulleys, chains and sprockets; Inspection of screw jacks, lever devices, push-pull rod Systems. Control Cables Types of cables; End fittings, turnbuckles and compensation devices; Pulleys and cable system components; Bowden cables; Aircraft flexible control systems. Swaging of end fittings; Inspection and testing of control cables; Bowden cables; Aircraft flexible control systems. UNIT V Pipes and Unions (a) Identification of, and types of rigid and flexible pipes and their connectors used in aircraft; (b) Standard unions for aircraft hydraulic, fuel, oil, pneumatic and air system pipes. Pipes and Hoses: Bending and belling/flaring aircraft pipes; Inspection and testing of aircraft pipes and hoses; Installation and clamping of pipes. Springs: Types of springs, materials, characteristics and applications. Inspection and testing of springs.	• •						
Gear types and their application; Gear ratios, reduction and multiplication gear systems, driven and driving gears, idler gears, mesh patterns; Belts and pulleys, Chains and sprockets. Inspection of gears, backlash; Inspection of belts and pulleys, chains and sprockets; Inspection of screw jacks, lever devices, push-pull rod Systems. Control Cables Types of cables; End fittings, turnbuckles and compensation devices; Pulleys and cable system components; Bowden cables; Aircraft flexible control systems. Swaging of end fittings; Inspection and testing of control cables; Bowden cables; Aircraft flexible control systems. UNIT V Pipes and Unions (a) Identification of, and types of rigid and flexible pipes and their connectors used in aircraft; (b) Standard unions for aircraft hydraulic, fuel, oil, pneumatic and air system pipes. Pipes and Hoses: Bending and belling/flaring aircraft pipes; Inspection and testing of aircraft pipes and hoses; Installation and clamping of pipes. Springs: Types of springs, materials, characteristics and applications. Inspection and testing of springs.	•						
systems, driven and driving gears, idler gears, mesh patterns; Belts and pulleys, Chains and sprockets. Inspection of gears, backlash; Inspection of belts and pulleys, chains and sprockets; Inspection of screw jacks, lever devices, push-pull rod Systems. Control Cables Types of cables; End fittings, turnbuckles and compensation devices; Pulleys and cable system components; Bowden cables; Aircraft flexible control systems. Swaging of end fittings; Inspection and testing of control cables; Bowden cables; Aircraft flexible control systems. UNIT V Pipes and Unions (a) Identification of, and types of rigid and flexible pipes and their connectors used in aircraft; (b) Standard unions for aircraft hydraulic, fuel, oil, pneumatic and air system pipes. Pipes and Hoses: Bending and belling/flaring aircraft pipes; Inspection and testing of aircraft pipes and hoses; Installation and clamping of pipes. Springs: Types of springs, materials, characteristics and applications. Inspection and testing of springs.	ransmissio	ns en					
pulleys, Chains and sprockets. Inspection of gears, backlash; Inspection of belts and pulleys, chains and sprockets; Inspection of screw jacks, lever devices, push-pull rod Systems. Control Cables Types of cables; End fittings, turnbuckles and compensation devices; Pulleys and cable system components; Bowden cables; Aircraft flexible control systems. Swaging of end fittings; Inspection and testing of control cables; Bowden cables; Aircraft flexible control systems. UNIT V Pipes and Unions (a) Identification of, and types of rigid and flexible pipes and their connectors used in aircraft; (b) Standard unions for aircraft hydraulic, fuel, oil, pneumatic and air system pipes. Pipes and Hoses: Bending and belling/flaring aircraft pipes; Inspection and testing of aircraft pipes and hoses; Installation and clamping of pipes. Springs: Types of springs, materials, characteristics and applications. Inspection and testing of springs.	ear types	and their application; Gear ratios, reduction and multiplication gear					
pulleys, chains and sprockets; Inspection of screw jacks, lever devices, push-pull rod Systems. Control Cables Types of cables; End fittings, turnbuckles and compensation devices; Pulleys and cable system components; Bowden cables; Aircraft flexible control systems.Swaging of end fittings; Inspection and testing of control cables; Bowden cables;Aircraft flexible control systems. UNIT V Pipes and Unions (a) Identification of, and types of rigid and flexible pipes and their connectors used in aircraft; (b) Standard unions for aircraft hydraulic, fuel, oil, pneumatic and air system pipes. Pipes and Hoses: Bending and belling/flaring aircraft pipes; Inspection and testing of aircraft pipes and hoses; Installation and clamping of pipes. Springs: Types of springs, materials, characteristics and applications. Inspection and testing of springs.	ystems, dı	ven and driving gears, idler gears, mesh patterns; Belts and					
chains and sprockets; Inspection of screw jacks, lever devices, push-pull rod Systems. Control Cables Types of cables; End fittings, turnbuckles and compensation devices; Pulleys and cable system components; Bowden cables; Aircraft flexible control systems. Swaging of end fittings; Inspection and testing of control cables; Bowden cables; Aircraft flexible control systems. UNIT V Pipes and Unions (a) Identification of, and types of rigid and flexible pipes and their connectors used in aircraft; (b) Standard unions for aircraft hydraulic, fuel, oil, pneumatic and air system pipes. Pipes and Hoses: Bending and belling/flaring aircraft pipes; Inspection and testing of aircraft pipes and hoses; Installation and clamping of pipes. Springs: Types of springs, materials, characteristics and applications. Inspection and testing of springs.	ulleys,Chair	s and sprockets. Inspection of gears, backlash; Inspection of belts and					
Control Cables Types of cables; End fittings, turnbuckles and compensation devices; Pulleys and cable system components; Bowden cables; Aircraft flexible control systems. Swaging of end fittings; Inspection and testing of control cables; Bowden cables; Aircraft flexible control systems. UNIT V Pipes and Unions (a) Identification of, and types of rigid and flexible pipes and their connectors used in aircraft; (b) Standard unions for aircraft hydraulic, fuel, oil, pneumatic and air system pipes. Pipes and Hoses: Bending and belling/flaring aircraft pipes; Inspection and testing of aircraft pipes and hoses; Installation and clamping of pipes. Springs: Types of springs, materials, characteristics and applications. Inspection and testing of springs.	ulleys,						
Control Cables Types of cables; End fittings, turnbuckles and compensation devices; Pulleys and cable system components; Bowden cables; Aircraft flexible control systems. Swaging of end fittings; Inspection and testing of control cables; Bowden cables; Aircraft flexible control systems. UNIT V Pipes and Unions (a) Identification of, and types of rigid and flexible pipes and their connectors used in aircraft; (b) Standard unions for aircraft hydraulic, fuel, oil, pneumatic and air system pipes. Pipes and Hoses: Bending and belling/flaring aircraft pipes; Inspection and testing of aircraft pipes and hoses; Installation and clamping of pipes. Springs: Types of springs, materials, characteristics and applications. Inspection and testing of springs.	hains and	sprockets; Inspection of screw jacks, lever devices, push-pull rod					
Types of cables; End fittings, turnbuckles and compensation devices; Pulleys and cable system components; Bowden cables; Aircraft flexible control systems. Swaging of end fittings; Inspection and testing of control cables; Bowden cables; Aircraft flexible control systems. UNIT V Pipes and Unions (a) Identification of, and types of rigid and flexible pipes and their connectors used in aircraft; (b) Standard unions for aircraft hydraulic, fuel, oil, pneumatic and air system pipes. Pipes and Hoses: Bending and belling/flaring aircraft pipes; Inspection and testing of aircraft pipes and hoses; Installation and clamping of pipes. Springs: Types of springs, materials, characteristics and applications. Inspection and testing of springs.	ystems.						
cable system components; Bowden cables; Aircraft flexible control systems. Swaging of end fittings; Inspection and testing of control cables; Bowden cables; Aircraft flexible control systems. UNIT V Pipes and Unions (a) Identification of, and types of rigid and flexible pipes and their connectors used in aircraft; (b) Standard unions for aircraft hydraulic, fuel, oil, pneumatic and air system pipes. Pipes and Hoses: Bending and belling/flaring aircraft pipes; Inspection and testing of aircraft pipes and hoses; Installation and clamping of pipes. Springs: Types of springs, materials, characteristics and applications. Inspection and testing of springs.	ontrol Cabl	es					
systems. Swaging of end fittings; Inspection and testing of control cables; Bowden cables; Aircraft flexible control systems. UNIT V Pipes and Unions (a) Identification of, and types of rigid and flexible pipes and their connectors used in aircraft; (b) Standard unions for aircraft hydraulic, fuel, oil, pneumatic and air system pipes. Pipes and Hoses: Bending and belling/flaring aircraft pipes; Inspection and testing of aircraft pipes and hoses; Installation and clamping of pipes. Springs: Types of springs, materials, characteristics and applications. Inspection and testing of springs.	ypes of ca	oles; End fittings, turnbuckles and compensation devices; Pulleys and					
cables;Aircraft flexible control systems. UNIT V Pipes and Unions (a) Identification of, and types of rigid and flexible pipes and their connectors used in aircraft; (b) Standard unions for aircraft hydraulic, fuel, oil, pneumatic and air system pipes. Pipes and Hoses: Bending and belling/flaring aircraft pipes; Inspection and testing of aircraft pipes and hoses; Installation and clamping of pipes. Springs: Types of springs, materials, characteristics and applications. Inspection and testing of springs.	able syst	em components; Bowden cables; Aircraft flexible control					
UNIT V Pipes and Unions (a) Identification of, and types of rigid and flexible pipes and their connectors used in aircraft; (b) Standard unions for aircraft hydraulic, fuel, oil, pneumatic and air system pipes. Pipes and Hoses: Bending and belling/flaring aircraft pipes; Inspection and testing of aircraft pipes and hoses; Installation and clamping of pipes. Springs: Types of springs, materials, characteristics and applications. Inspection and testing of springs.	ystems.Swa	ging of end fittings; Inspection and testing of control cables; Bowden					
(a) Identification of, and types of rigid and flexible pipes and their connectors used in aircraft; (b) Standard unions for aircraft hydraulic, fuel, oil, pneumatic and air system pipes. Pipes and Hoses: Bending and belling/flaring aircraft pipes; Inspection and testing of aircraft pipes and hoses; Installation and clamping of pipes. Springs: Types of springs, materials, characteristics and applications. Inspection and testing of springs.	ables;Aircra	ft flexible control systems.					
aircraft; (b) Standard unions for aircraft hydraulic, fuel, oil, pneumatic and air system pipes. Pipes and Hoses: Bending and belling/flaring aircraft pipes; Inspection and testing of aircraft pipes and hoses; Installation and clamping of pipes. Springs: Types of springs, materials, characteristics and applications. Inspection and testing of springs.	UNIT V	Pipes and Unions					
(b) Standard unions for aircraft hydraulic, fuel, oil, pneumatic and air system pipes. Pipes and Hoses: Bending and belling/flaring aircraft pipes; Inspection and testing of aircraft pipes and hoses; Installation and clamping of pipes. Springs: Types of springs, materials, characteristics and applications. Inspection and testing of springs.	a) Identifica	ion of, and types of rigid and flexible pipes and their connectors used in					
Pipes and Hoses: Bending and belling/flaring aircraft pipes; Inspection and testing of aircraft pipes and hoses; Installation and clamping of pipes. Springs: Types of springs, materials, characteristics and applications. Inspection and testing of springs.	ircraft;						
of aircraft pipes and hoses; Installation and clamping of pipes. Springs: Types of springs, materials, characteristics and applications. Inspection and testing of springs.) Standard	unions for aircraft hydraulic, fuel, oil, pneumatic and air system pipes.					
Springs: Types of springs, materials, characteristics and applications. Inspection and testing of springs.	ipes and H	oses: Bending and belling/flaring aircraft pipes; Inspection and testing					
and testing of springs.	f aircraft pi	es and hoses; Installation and clamping of pipes.					
	prings: Туր	es of springs, materials, characteristics and applications. Inspection					
Test + Revision	and testing of springs.						
		Test + Revision	10				
Total		Total	60				

1092235210	Aircraft Maintenance Engineering	L	Т	Р	С
THEORY	All Craft Maintenance Engineering	4	0	0	3

Suggested list of Students Activity,

- Presentation/Seminars by students on any recent technological developments based on the course.
- Periodic class quizzes conducted on a weekly/fortnightly based on the course.
- Mini project that shall be an extension of any practical lab exercise to real-world application

Text Book for Reference:

- 1. Airframe and Powerplant Mechanics (AC 65-15A)-Airframe Handbook FAA.
- 2. Civil Aircraft Inspection Procedure (CAP 459) Part II Aircraft.
- 3. Aircraft Maintenance and Repair By Kroes, Watkin and Delph.
- 4. Acceptable Methods, Techniques and practices (FAA)-EA-AC 43.13-1 A&2A.
- 5. Aviation Maintenance Technician Handbook by FAA.

1092235210	Aircraft Maintenance Engineering	L	Т	Р	С
THEORY	All Craft Maintenance Engineering	4	0	0	3

END SEMESTER QUESTION PATTERN - Theory Exam

Duration: 3 Hrs. Max. Marks: 100

Note: Answer Ten questions by selecting two questions from each unit. Each question carries 10 marks each.

Instruction to the Question Setters

Four questions will be asked from every unit, students should write any two questions for 10 marks. The question may have two subdivisions only.

1092235320	Aircraft Maintenance Engineering Practical	L	Т	Р	С
PRACTICAL	Ancialt Maintenance Engineering Fractical	0	0	6	3

Introduction:

The subject deals with the maintenance concepts and practices in the general and as applicable to aeronautical field. The students will acquire knowledge and skill in the maintenance of aircraft and its system, organization required controls and economics of maintenance. The teaching is to be practice oriented.

Course Objectives:

To Study the basic knowledge of Safety Precautions-Aircraft, Corrosion, Welding, Brazing, Soldering and Bonding, Disassembly, Inspection, Repair and Assembly Techniques, Maintenance Procedures and Bearings, Transmission, Control Cables.

Course Outcomes:

On successful completion of this course, the student will be able to

CO1: Understand the various types of surface defects of aircraft structure.

CO2: Apply the various methods to identify the surface defects of aircraft structure and system components..

CO3: Understand the various types of surface defects of aircraft system components.

CO4: Understand the Wiring and repair of electrical items in the cabin crew.

CO5: Learn the maintenance of links / bearings.

Pre-requisites:

NIL

1092235320	Aircraft Maintenance Engineering Practical	L	Т	Р	С
PRACTICAL	Ancialt Maintenance Lingineering Fractical	0	0	6	3

CO/PO Mapping

CO / PO	P01	P02	P03	P04	P05	P06	P07
CO1	2	1	1	3	-	-	2
CO2	2	2	1	3	-	-	2
C03	2	2	2	3	-	-	3
CO4	2	2	2	3	-	-	2
C05	2	2	-	3	1	-	-

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

Instructional Strategy:

- It is advised that teachers make the learning experience more engaging by introducing innovative and interesting ways of teaching.
- The teachers need to expose the student to material in multiple modes help them learn it faster and retain it longer.
- Incorporate technology tools and resources, such as online platforms, interactive
 multimedia, and virtual communication tools, to enhance engagement and provide
 additional practice opportunities.
- Throughout the course, a theory-demonstrate-practice-activity strategy may be used to ensure that learning is outcome and employability based.
- Seminars: Host seminars where students present their findings from Swinburne's test and performance curve analyses.
- Group Discussions: Facilitate discussions on the results and implications of these tests for real-world applications.
- Simulation Software: Utilize simulation software to model and analyze the operation

1092235320	Aircraft Maintenance Engineering Practical	L	Т	Р	С
PRACTICAL	Ancialt Maintenance Lingineering Fractical	0	0	6	3

- Guest Lectures: Invite industry experts to talk about the latest technologies and trends in motor drives and their applications in robotics and automation.
- This strategy aims to blend theoretical knowledge with practical skills, preparing students for real-world engineering challenges. It encourages active learning, critical thinking, and collaboration among students, essential skills for future engineers.
- Preparation: Before each class, ensure all equipment is functional and safety protocols are in place.
- Assessment: Evaluate students through quizzes, lab reports, and presentations on their understanding and analysis of the experiments.

Assessment Methodology:

	C	ontinuous Asses	sment (40 mark	s)	End Semester
	CA1	CA2	CA3	CA4	Examination (60 marks)
Mode	Practical Test	Practical Test	Practical Document	Practical Test	Practical Examination
Portion	First Cycle 50% Exercises	Second Cycle Another 50% Exercises	All Exercises	All Exercises	All Exercises
Duration	2 Periods	2 Periods	Regularly	3 Hours	3 Hours
Exam Marks	50	50	100	100	100
Converted to	10	10	10	20	60
Marks	1	0	10	20	60
Tentative Schedule	7th Week	14th Week	15th Week	16th Week	

Note:

1092235320	Aircraft Maintenance Engineering Practical	L	Т	Р	С
PRACTICAL	Ancialt Maintenance Engineering Fractical	0	0	6	3

• CA1 and CA2: All the exercises/experiments as per the portions mentioned above should be completed and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation as below. The marks awarded will be converted to 10 Marks for each assessment test. Best of one will be considered for the internal assessment of 10 Marks.

SCHEME OF EVALUATION

PART	DESCRIPTION	MARKS
А	Dismantling	15
В	Servicing	20
С	Assembling	15
	TOTAL	50

 CA 3: Practical document should be maintained for every exercise immediately after completion of the practice. The same should be evaluated for 10 Marks. The total marks awarded should be converted to 10 Marks for the internal assessment. The practical document should be submitted for the Practical Test and End Semester Examination with a bonafide certificate

The details of the documents to be prepared as per the instruction below.

Each exercise should be completed on the day of practice. The same shall be evaluated for 10 marks on the day or next day of practice before commencement of the next exercise.

This documentation can be carried out in a separate notebook or printed manual or in a file with the documents. The procedure and sketch should be written by the student manually.

1092235320	Aircraft Maintenance Engineering Practical	L	Т	Р	С
PRACTICAL	Ancialt Maintenance Lingineering Fractical	0	0	6	3

The detailed date of the practices and its evaluations should be maintained in the course logbook. The logbook and the practical documents should be submitted for the verification by the Flying Squad and DOTE Official.

• CA 4: All the exercises should be completed and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test (CA4) should be conducted as per the scheme of evaluation as below. The marks awarded should be converted to 20 Marks for the internal assessment.

SCHEME OF EVALUATION

Part	Description	Marks
А	Procedure	20
В	Dismantling	25
С	Servicing	20
D	Assembling	25
E	Viva Voice	10
	TOTAL MARKS	100

1092235320	Aircraft Maintenance Engineering Practical	L	Т	Р	С
PRACTICAL	Ancialt Maintenance Engineering Plactical	0	0	6	3

Syllabus Contents

Exercise No.	Description	Period
1	Use metrological methods of various types of surface defects of aircraft structure using simple aids like magnifying glass, light and mirror. Use zone and station numbers to record defect location.	20
2	Use metrological methods of various types of surface defects of aircraft structure and system components like bearings, gears, chain, pulley, spring and cables using simple aids like magnifying glass, light and mirror and record defects.	20
3	Wiring and repair of electrical items in the cabin crew.	20
4	Removal of control surface and checking of attachment links / bearing and lubrication of bearing and refix the control surface check rotation.	20
	Practice + Test + Revision	10
	Total	90

Suggested List of Students Activity:

- Engaging in group discussions to delve into the theoretical dimensions .
 - Presenting lab and project findings to foster knowledge reinforcement and polish communication skills.
 - Analyzing industrial case studies to connect theoretical learning with practical applications in real-world scenarios.
 - Participating in guest lectures and workshops to gain insights from industry experts and learn about critical diagnostic tests for equipment maintenance.

1092235320	Aircraft Maintenance Engineering Practical	L	Т	Р	С
PRACTICAL	Ancialt Maintenance Lingineering Fractical	0	0	6	3

END SEMESTER EXAMINATION – PRACTICAL EXAM. BOARD EXAMINATIONS

Note:

- All the exercises have to be completed, any one exercise will be given for examination.
- All the exercises should be given in the question paper. The student is allowed to select by lot or question papers issued by the DOTE Exam section shall be used.
- Practical documents along with the activity report should be submitted for the End Semester Examinations.

DETAILED ALLOCATION OF MARKS.

Part	Description	Marks
Α	Procedure	20
В	Dismantling	25
С	Servicing	20
D	Assembling	25
E	Viva Voice	10
	TOTAL MARKS	100

1092235320	Aircraft Maintenance Engineering Practical	L	Т	Р	С
PRACTICAL	Ancialt Maintenance Lingineering Fractical	0	0	6	3

Equipment / Facilities required conducting the Practical Course.

S.No	Name of the Equipment's	Quantity Required
1.	Serviceable aircraft with all systems	1
2.	Assembling and disassembling tools	1
3.	Aircraft Hydraulic system with accessories*	1
4.	Fire Extinguishers (Solid, Liquid, Gas)	1
5.	Aircraft fuel system*	1
6.	Aircraft Lubrication system*	1
7.	Aircraft Landing system*	1
8.	Aircraft Tire*	8
9.	Air compressor	1
10.	Pressure gauges	2
11.	Battery and charging system	1

1092235440	Advanced Airframe Structure	L	Т	Р	С
PRACTICUM	Advanced Airifaine Structure	1	0	4	3

Introduction:

This course gives exposure and basic knowledge of structural requirements of all lift surfaces, fuselage, landing gear and control surfaces of an aircraft. This will help students to correlate and understand the aerodynamics loads and their effects on the structures better. This also helps students to acquire good skills in servicing and maintenance of these structures.

Students should be physically shown at least lifting and control surfaces structures along with landing gear systems sufficient practice should be given to gent students familiarized with these structures.

Course Objectives:

The objective of this course is to enable the student,

• To Study the basic knowledge of Under Carriages, Layout of Controls, Aircraft plumbing, Theory of weight and balance and Aircraft rigging and symmetry checks

Course Outcomes:

On successful completion of this course, the student will be able to

- CO1: Understand the Functions of undercarriage and aircraft attachment method.
- CO2: Understand the layout of primary and secondary control surfaces.
- CO3: Principle of Cutting and flaring process of pipelines in the aircraft.
- CO4: Understand the Weighing of the Aircraft and Aircraft loading.
- CO5: Understand the Levelling of Aircraft Rigging of Aircraft laterally and longitudinally Rigging of control surfaces

Pre-requisites:

Applied Physics, Basic Electrical and Mechanical Engineering.

1092235440	Advanced Airframe Structure	L	Т	Р	С
PRACTICUM	Advanced Airifaine Structure	1	0	4	3

CO/PO Mapping

CO / PO	P01	P02	P03	P04	P05	P06	P07
C01	3	-	-	2	3	2	3
C02	3	2	3	2	3	3	3
C03	3	-	3	3	3	3	3
C04	3	3	3	3	3	3	3
CO5	3	2	3	2	3	3	3

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

Instructional Strategy:

- Engage and Motivate: Instructors should actively engage students to boost their learning confidence.
- Real-World Relevance: Incorporate relatable, real-life examples and engineering applications to help students understand and appreciate course concepts.
- Interactive Learning: Utilize demonstrations and plan interactive student activities for an engaging learning experience.
- Application-Based Learning: Employ a theory-demonstrate-practice-activity strategy throughout the course to ensure outcome-driven learning and employability.
- Simulation and Real-World Practice: Conduct demonstrations and hands-on activities in a simulated environment, transitioning to real-world scenarios when possible.
- Encourage Critical Analysis: Foster an environment where students can honestly assess experiment outcomes and analyze potential sources of error in case of discrepancies.

1092235440	Advanced Airframe Structure	L	Т	Р	С
PRACTICUM	Advanced Anname Structure	1	0	4	3

Assessment Methodology:

	Co	ontinuous Asses	sment (40 mark	s)	End
	CA1	CA2	CA3	CA4	Semester Examination (60 marks)
Mode	Practical Test	Practical Test	Written Test Theory	Practical Test	Practical Examination
Portion	50 % Experiments	Another 50 % Experiments	All Units	All Experiments	All Experiments
Duration	2 Periods	2 Periods	3 Hours	3 Hours	3 hours
Exam Marks	60	60	100	100	100
Converted to Marks	10	10	15	15	60
Marks	1	0	15	15	60
Tentative Schedule	7th Week	14th Week	15th Week	16th Week	

Note:

CA1 and CA2: All the exercises/experiments should be completed as per the portions
above and kept for the practical test. The students shall be permitted to select any one
by lot for the test. The practical test should be conducted as per the scheme of
evaluation as below. The marks awarded shall be converted to 10 Marks for each
assessment test. Best of one will be considered for the internal assessment of 10
Marks.

1092235440	Advanced Airframe Structure	L	Т	Р	С
PRACTICUM	Advanced Anname Structure	1	0	4	3

Practical documents should be maintained for every experiment immediately after completion of the practice. The practical document should be submitted for the practical test. The same should be evaluated for 10 Marks for each exercise/experiment. The total marks awarded should be converted to 10 Marks for the practical test as per the scheme of evaluation as below.

The details of the documents to be prepared as per the instruction below.

Each experiment should be completed on the day of practice. The same shall be evaluated for 10 marks on the day or next day of practice before commencement of the next experiment.

This documentation can be carried out in a separate notebook or a printed manual or a file with documents. The student should draw the Circuit Diagram and take readings, do calculations and prepare the Graph/Result manually in the documents.

The detailed date of the practices and its evaluations should be maintained in the course logbook. The log book and the practical documents should be submitted for the verification by the Flying Squad and DOTE Official.

SCHEME OF EVALUATION

PART	DESCRIPTION	MARKS
А	Preparation/Marking	20
В	Assembling/Fabrication	20
С	Visual inspection	10
	TOTAL	50
D	Practical Documents (As per the portions)	10
	Total Marks	60

Cycle I: 1, 2 and 3. **Cycle II:** 4, 5, 6 and 7.

1092235440	Advanced Airframe Structure	L	Т	Р	С
PRACTICUM	Advanced Anname Structure	1	0	4	3

 CA 3: Written Test for complete theory portions should be conducted for 100 Marks as per the question pattern below. The marks scored will be converted to 15 Marks for internal assessment.

Question pattern – Written Test Theory

Description		Marks		
Part – A	30 MCQ Questions.	30 X 1 Mark	30 Marks	
Part - B	7 Questions to be answered out of 10 Questions.	7 X 10 Marks	70 Marks	
	TOTAL		100 Marks	

• CA 4: All the exercises/experiments should be completed and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation below. After completion of all the exercises the practical test should be conducted as per End Semester Examination question pattern scheme of evaluation. The marks awarded should be converted to 15 Marks for the internal assessment.

SCHEME OF EVALUATION

Model Practical Examination and End Semester Examination - Practical Exam

PART	DESCRIPTION	MARKS
А	Procedure	10
В	Preparation / Marking	20
С	Assembling / Fabrication	20
D	Visual inspection	10
E	Written Test (Theory Portion)	30
F	Viva Voce	10
	TOTAL	100

Note: For the written test 30 MCQ shall be asked from the theory portions.

1092235440	Advanced Airframe Structure	L	Т	Р	С
PRACTICUM	Advanced Anname Structure	1	0	4	3

Syllabus Contents

Theory Po	rtion			
UNIT - I : U	Inder Carriages	Period		
Functions aircraft.	of under carriage - Types of under carriage -Method of attachment of	8		
UNIT - II : I	_ayout of Controls			
	Layout of primary control surfaces - Layout of Secondary control surfaces - Balancing of control surfaces			
UNIT - III : Aircraft plumbing				
Metal Pipe lines - Flexible pipelines - Cutting and flaring process of pipelines - Process of Installation of pipelines - Color coding				
UNIT - IV	Theory of weight and balance			
Weighing	the Aircraft - Aircraft loading			
UNIT – V:	UNIT - V: Aircraft rigging and symmetry checks			
Leveling o	f Aircraft - Rigging of Aircraft laterally and longitudinally			
Rigging o	f control surfaces - Symmetry check of aircraft			
Rigging in	Rigging instruments and equipment			
Practical Exercises:				
Ex.No	Name of the Experiment	Period		
1.	Develop the model of 2 seater Flight airframe with four to five members group	60		

1092235440	Advanced Airframe Structure	L	Т	Р	С
PRACTICUM	Advanced Airifaine Structure	1	0	4	3

Suggested List of Students Activity:

- 1. Presentation/Seminars by students on any recent technological developments based on the course.
- 2. Periodic class guizzes conducted on a weekly/fortnightly based on the course.

Text book for Reference:

- 1. W T Thomson, Vibration Theory and Application
- 2. 2. Perry, D.E Azar, Aircraft Structures, McGraw Hill
- 3. 3. Bruhn, Fundamentals of Aircraft Structures, McGraw Hill
- 4. 4. E Torenbeek, Synthesis of Airplane Design
- 5. L M Nicholai, Fundamentals of airplane Design, Univ. of Dayton DHIO, 1975
- 6. T H G Megson, Aircraft Structures for Engineering Students, Edward Arnold,
- 7. U.K.
- 8. 7. R M Rivello, Theory and Analysis of Flight Structure, McGrawHill Book Co.
- 9. 8. N G R Iyengar, Structural Stability of Columns and Plates, Affiliated East West
- 10. Press (P) Ltd, New Delhi.

Web-based/Online Resources:

- Composites repair -https://www.compositesworld.com/articles/composites-repair
- The ABC's of Composite Repair https://www.aviationpros.com/engines-components/aircraft-airframe-accessories/com
 posites/article/11105657/the-a-b-cs-of-aircraft-composite-repair

Equipment / Facilities required to conduct the Practical Course.

S.No	Name of the Equipment's	Quantity Required
1	Serviceable Aircraft	1
2	Basic Assembling and disassembling Tools	1 set

1092235440	Advanced Airframe Structure	L	Т	Р	С
PRACTICUM		1	0	4	3

END SEMESTER EXAMINATIONS - PRACTICAL EXAM

Note:

All the exercises should be completed before the Board Practical Examinations. End Semester Practical examination should be conducted for all the exercises / experiments for 100 Marks. Students will be permitted to select any one exercise by lot or question paper supplied by the DOTE Exam section shall be used. The record of work done by the student should be submitted with a Bonafide Certificate.

SCHEME OF EVALUATION

PART	DESCRIPTION	MARKS
А	Procedure	10
В	Preparation/Marking	20
С	Assembling/Fabrication	20
D	Visual inspection	10
E	Written Test (theory Portion)	30
F	Viva Voce	10
	TOTAL	100

Note: For the written test 30 MCQ shall be asked from the theory portions.

1091235540		L	Т	Р	С
PRACTICUM	Aircraft Navigation System	1	0	4	3

Introduction:

Diploma holders in Aircraft Maintenance must have a sound knowledge of various avionics Navigation systems which go in the Aircraft Radio System. This subject is designed to give them an insight into typical systems so that they understand their principles of working. This would also help them in acquiring skills in simulation of navigation systems.

Course Objectives:

The objective of this course is to enable the student to

 To Study the basic knowledge of Avionics Systems, General Navigation, Navigation control, Radio Navigation - ADF - VOR - LORAN - ILS MLS, Navigation Guidance, Flight Control.

Course Outcomes:

On successful completion of this course, the student will be able to

CO1: Understand the fundamental principles of flight mechanics including forces, moments, equilibrium, and static stability of an aircraft.

CO2: Explain basic navigation concepts and techniques, including the determination of aircraft position and motion relative to reference points.

CO3: Describe the principles and applications of radio navigation systems like ADF, VOR, LORAN, ILS, and MLS.

CO4: Discuss the functions and applications of flight attitude control systems (autopilot), stability augmentation systems (SAS), control augmentation systems (CAS), GPS, and inertial navigation.

CO5: Perform calculations for weight and balance, utilize flight management and guidance systems for aircraft navigation, and optimize aircraft performance and fuel consumption.

1091235540	Aircraft Navigation System	L	Т	Р	С
PRACTICUM		1	0	4	3

CO/PO Mapping

CO / PO	P01	P02	P03	P04	P05	P06	P07
C01	3	2	1	-	-	-	-
C02	3	2	-	1	-	-	-
C03	3	-	-	-	1	-	1
CO4	3	-	2	-	-	1	-
CO5	3	-	2	1	-	-	-

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

Instructional Strategy:

Engage and Motivate: Instructors should actively engage students to boost their learning confidence.

Real-World Relevance: Incorporate relatable, real-life examples and engineering applications to help students understand and appreciate course concepts.

Interactive Learning: Utilize demonstrations and plan interactive student activities for an engaging learning experience.

Application-Based Learning: Employ a theory-demonstrate-practice-activity strategy throughout the course to ensure outcome-driven learning and employability.

Simulation and Real-World Practice: Conduct demonstrations and hands-on activities in a simulated environment, transitioning to real-world scenarios when possible.

Encourage Critical Analysis: Foster an environment where students can honestly assess experiment outcomes and analyze potential sources of error in case of discrepancies.

1091235540	Aircraft Navigation System	L	Т	Р	С
PRACTICUM	Alician Navigation System	1	0	4	3

Assessment Methodology:

	Co	ontinuous Asses	sment (40 mark	(s)	End
	CA1	CA2	CA3	CA4	Semester Examination (60 marks)
Mode	Practical	Practical	Written Test	Practical	Practical
Wiode	Test	Test	Theory	Test	Examination
Portion	Cycle I	Cycle II	All Units	All	All
lordon	Experiments	Experiments	All Office	Experiments	Experiments
Duration	2 Periods	2 Periods	3 Hours	3 Hours	3 hours
Exam Marks	60	60	100	100	100
Converted to Marks	10	10	15	15	60
Marks	1	0	15	15	60
Tentative Schedule	7th Week	14th Week	15th Week	16th Week	

Note:

CA1 and CA2: All the exercises/experiments should be completed as per the portions
above and kept for the practical test. The students shall be permitted to select any one
by lot for the test. The practical test should be conducted as per the scheme of
evaluation as below. The marks awarded shall be converted to 10 Marks for each
assessment test. Best of one will be considered for the internal assessment of 10
Marks.

Practical documents should be maintained for every experiment immediately after completion of the practice. The practical document should be submitted for the practical test. The same should be evaluated for 10 Marks for each exercise/experiment. The total

1091235540	Aircraft Navigation System	L	Т	Р	С
PRACTICUM	Aliciait Navigation System	1	0	4	3

marks awarded should be converted to 10 Marks for the practical test as per the scheme of evaluation as below.

The details of the documents to be prepared as per the instruction below.

Each experiment should be completed on the day of practice. The same shall be evaluated for 10 marks on the day or next day of practice before commencement of the next experiment.

This documentation can be carried out in a separate notebook or a printed manual or a file with documents. The student should draw the Circuit Diagram and take readings, do calculations and prepare the Graph / Result manually in the documents.

The detailed date of the practices and its evaluations should be maintained in the course logbook. The log book and the practical documents should be submitted for the verification by the Flying Squad and DOTE Official.

SCHEME OF EVALUATION

PART	DESCRIPTION	MARKS
А	Procedure	10
В	Coding	20
С	Execution	20
	TOTAL	50
D	Practical Documents (As per the portions)	10
	Total Marks	60

Cycle I: 1, 2 and 3.

Cycle II: 4, 5, 6 and 7.

 CA 3: Written Test for complete theory portions should be conducted for 100 Marks as per the question pattern below. The marks scored will be converted to 15 Marks for internal assessment.

1091235540		L	Т	Р	С
PRACTICUM	Aircraft Navigation System	1	0	4	3

Question pattern - Written Test Theory

Description		Marks		
Part – A	30 MCQ Questions.	30 X 1 Mark	30 Marks	
Part – B	7 Questions to be answered out of 10 Questions.	7 X 10 Marks	70 Marks	
	100 Marks			

CA 4: All the exercises/experiments should be completed and kept for the practical test.
The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation below. After completion of all the exercises the practical test should be conducted as per End Semester Examination question pattern scheme of evaluation. The marks awarded should be converted to 15 Marks for the internal assessment.

SCHEME OF EVALUATION

Model Practical Examination and End Semester Examination - Practical Exam

PART	DESCRIPTION	MARKS
А	Procedure	10
В	Coding	20
С	Execution	20
D	Result	10
E	Written Test	30
F	Viva Voce	10
	TOTAL	100

Note: For the written test 30 MCQ shall be asked from the theory portions.

1091235540	Aircraft Navigation System	L	Т	Р	С
PRACTICUM	Aliciait Navigation System	1	0	4	3

Syllabus Contents

Theory P	Portion			
	: GENERAL	3		
	f flight mechanics, Dynamic of an aircraft relative to the reference coordinate			
on the ai	rcraft centre of gravity. Forces and moments acting on the aircraft Equilibrium	ım of the		
forces a	nd moments acting on the aircraft, aircraft equation of motion and aircr	aft static		
stability.				
UNIT - II : NAVIGATION				
Basic o	concepts of navigation process with guidance circumference related to	Control,		
Circum	ference, Determination of position and motion of an aircraft through measu	ırements		
of a res	pective geometric configuration relative to reference			
Practical Exercises:				
Ex.No	Name of the Experiment	Period		
1	Calibration of Accelerometer.	7		
2	Calibration of Gyroscope.	7		
UNIT – II	: RADIO NAVIGATION	3		
ADF - V	OR - LORAN - ILS - MLS.			
UNIT - IV	GUIDANCE	3		
Primary	functions in flight attitude control (auto pilot), Stability augmentation syste	m (SAS),		
and Con	trol Augmentation system (CAS) longitudinal and lateral directional modes	of flight.		
Satellite	based navigation concept such as GPS application and the basic concept	of inertial		
navigatio	on, Required Navigation Procedure			
Practical	Exercises:			
Ex.No	Name of the Experiment	Period		
3	Calibration of optical sensor.	7		

1091235540	Aircraft Navigation System	L	Т	Р	С
PRACTICUM	Aircraft Navigation System	1	0	4	3

4	Simulation of Altimeter data.	7
5	Simulation of way point navigation.	7
UNIT – V	: FLIGHT MANAGEMENT	3

Calculation of weight and balance, familiarization with navigation of modern aircraft using flight management and guidance system, performance of aircraft, optimization of fuel consumption using flight management system

Practical Exercises:

Ex.No	Name of the Experiment	Period
6	Coordinate estimation of target using GPS.	7
7	Simulation of coordinate transformation Technique.	7
	Practice + Test + Revision	11
	Total	75

Suggested List of Students Activity:

Presentation/Seminars by students on any recent technological developments based on the course.

Periodic class quizzes conducted on a weekly/fortnightly based on the course.

Text book for Reference:

- 1. The Air Pilot's Manual, Flying Training Vol.3, Airlife Publishing.
- 2. J E Hitercock, Navigation for Pilots, Airlife Publishing 1997.
- 3. R B Underdown, Ground Studies for Pilots, Vol.3, Blackwell.
- 4. Trevor Thom, Air Navigation, Airlife Publishing.
- 5. A E Bramson and N H Birch, Radio Navigation for Pilots, Airlife Publishing 1984.
- 6. Avionics Navigation Systems, M.Kayton, W. Fried.
- 7. Aircraft Radio System-by J. Powell.
- 8. Electronic Communication System by George Kennedy.

1091235540	Aircraft Navigation System	L	Т	Р	С
PRACTICUM	Aliciait Navigation System	1	0	4	3

Equipment / Facilities required to conduct the Practical Course.

S.No	Name of the Equipment's	Quantity Required
1.	Computer	30 No
2.	MATLAB software	1 No

END SEMESTER EXAMINATIONS - PRACTICAL EXAM

Note:

All the exercises should be completed before the Board Practical Examinations. End Semester Practical examination should be conducted for all the exercises / experiments for 100 Marks. Students will be permitted to select any one exercise by lot or question paper supplied by the DOTE Exam section shall be used. The record of work done by the student should be submitted with a Bonafide Certificate.

SCHEME OF EVALUATION

PART	DESCRIPTION	MARKS
А	Procedure	10
В	Coding	20
С	Execution	20
D	Result	10
Е	Written Test	30
F	Viva Voce	10
	TOTAL	100

Note: For the written test 30 MCQ shall be asked from the theory portions.

1092235654	Innovation & Startup	L	Т	Р	С
PRACTICUM	illilovation & Startup	1	0	2	2

Introduction

The integration of Innovation and Start-ups concept within the syllabus is testament to the forward thinking nature of educational institutions. By introducing this concept, students are provided with a solid foundation upon which they can build their skills in Innovation and Start-ups. This course can bridge the gap between theory and practice. It allows students to apply the knowledge they have acquired in a real world context, thereby enhancing their understanding and retention of the above concept. This experimental learning approach not only fosters a deeper level of engagement but also trains student with practical skills necessary to navigate the complexities of the business world. This also empowers students to become an Innovator or Entrepreneur. With necessary tools and knowledge, educational institutions are preparing the next generation of entrepreneurs to tackle the challenges and opportunities that lie ahead. This syllabus will explore the different facets of innovation, including its importance, types and strategies for fostering a culture of innovation within organizations

Course Objectives

The objective of this course is to enable the students

- o To understand the concept of Innovation and Start-ups.
- o To acquire knowledge of Prototype development, IPR, Patents and Copyrights.
- o To have practical experience in preparing Business plan for Start-ups.
- o To visit the existing nearby industry to prepare a project report about the present challenges of that industry.
- o To know the different funding supports available from Government and Non-Government schemes for Start-ups.

1092235654	Innovation & Startup	L	Т	Р	С
PRACTICUM	illilovation & Startup	1	0	2	2

Course Outcomes

After successful completion of this course, the students should be able to

- CO 1: Differentiate between Innovation and Start-ups
- CO 2: Explain the importance of IPR, Patents and Copyrights.
- CO 3: Describe the methodology to be adopted for preparing the Business Plan
- CO 4: Gain practical experience by Industrial training and visiting the nearby industry
- Co 5: Explore and identify various funding facilities available from Government and Non-Government Schemes for Start-ups

Pre-requisites:

There are no specific prerequisites for this course, although a basic understanding of business and technology concepts would be beneficial.

CO/PO Mapping

CO / PO	P01	P02	P03	P04	P05	P06	P07
CO1	-	-	1	-	2	3	3
CO2	-	-	1	-	2	3	3
CO3	-	-	1	-	2	3	3
CO4	-	-	1	-	2	3	3
CO5	-	-	1	-	2	3	3

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

1092235654	Innovation & Startup	L	Т	Р	С
PRACTICUM	illilovation & Startup	1	0	2	2

Assessment Methodology

	Continuo	us Assessment (4	0 marks)	End Semester
	CA1	CA2	CA3	Examination (60 marks)
Mode	Class Assessment (Unit I, II & Unit III)	Seminar Presentations (Unit IV)	Submission of Industry Visit Project Report (Unit V)	Practical Examination (Project)
Duration	2 hours			3 hours
Exam Marks	50	20	30	100
Converted to	10	10	20	60
Marks	10	10	20	60

Continuous Assessment - 40 marks

S. No	Description	Marks
CA 1	Class Assessment (50 marks) - Unit - I,II & III	10 marks
	Written Examination - Theory Questions	
	10 questions out of 15 questions (10 x 3 marks :30 marks)	
	4 questions out of 6 questions (4 x 5 marks : 20 marks)	
CA 2	Seminar Presentations (20 marks- each topic carries 10 marks)	10 marks
	- Unit IV	
	Students should present any two topics with PPTs	
CA3	Submission of Industry Visit Project Report - (30 marks) - Unit V	20 marks
	Total	40 marks

1092235654	Innovation & Startup	L	Т	Р	С
PRACTICUM	illilovation & Startup	1	0	2	2

Syllabus Contents

UNIT I INTRODUCTION TO INNOVATION				
An Introduc	ction to Innovation and Creativity- Innovation in current Environment -	6		
Types of In	novation - Challenges of Innovation - Steps of Innovation Management -			
Divergent v/s Convergent thinking - Design thinking and Entrepreneurship.				
UNIT II	INCUBATION CLUBS, IPR, PATENTS AND COPYRIGHTS			
Idea Gene	ration - Incubation Clubs - Prototype Development - Marketing of	6		
Innovation	- Management of Innovation - Creation of IPR -Types of IPR - Patents and			
Copyrights	- Patents in India - Technological and Non-Technological Innovation			
Process.				
UNIT III GOVERNMENT AND NON-GOVERNMENT FUNDING SCHEMES FOR STAFF				
An introdu	ction to Start-up - Start-ups in India - Procedure for registration of	6		
Start-ups - Business Model- Business Plan - Case Studies - Opportunities and				
Challenges - Funding supports from Government Schemes -MUDRA, TANSEED,				
NEEDS, PMEGP, UYEGP - Non-Government Schemes - CSR Fund - Angel Investors -				
Venture Capitalist.				
UNIT IV				
All the stud	dents have to select a minimum of 2 topics from the list given below.	9		
They are expected to collect the resources with the help of faculty assigned to				
them to prepare PPTs for presentation				
1. Idea Generation.				
2. Inno	ovation Management.			
3. Pro	duct Development.			

1092235654	Innovation & Startup	L	Т	Р	С
PRACTICUM	iiiiovatioii & Staitup	1	0	2	2

9. E-Commerce success stories (any one).					
10. Role of Start-ups in Higher Education.					
11. Pro	fessional Networking in Building Brands.				
12. How to start a start-up in India.					
UNIT V EXPOSURE TO INDUSTRY					
UNIT V	EXPOSURE TO INDUSTRY				
	dents should visit and study the nearby industries, incubation centres,	18			
All the stu		18			
All the stur	dents should visit and study the nearby industries, incubation centres,	18			
All the sturstart-ups er	dents should visit and study the nearby industries, incubation centres, tc., and select any one to prepare a project report which covers the Name	18			
All the sturstart-ups er of the Indu	dents should visit and study the nearby industries, incubation centres, tc., and select any one to prepare a project report which covers the Name ustry/Organization, Introduction of the Industry, Type of the Industry,	18			
All the sturstart-ups er of the Indu Scope of the Process flo	dents should visit and study the nearby industries, incubation centres, tc., and select any one to prepare a project report which covers the Name ustry/Organization, Introduction of the Industry, Type of the Industry, ne Industry, Plant Layout and Location, Details of Plant and Machineries,	18			
All the sturstart-ups er of the Indu Scope of the Process flo	dents should visit and study the nearby industries, incubation centres, tc., and select any one to prepare a project report which covers the Name ustry/Organization, Introduction of the Industry, Type of the Industry, ne Industry, Plant Layout and Location, Details of Plant and Machineries, ow chart, Manufacturing Methods, Process of Manufacturing, Product	18			

1092235654	Innovation & Startup	L	Т	Р	С
PRACTICUM	illiovation & Startup	1	0	2	2

End Semester Examination - Project Exam

Students should be assessed for 100 Marks both by the internal examiner and external examiner appointed by the Chairman Board of Examinations.

Detailed Allocation of Marks

S. No	Description	Marks
Part A	Written Examination – Unit –I,II & III	45
	Theory Questions	
i)	10 questions out of 15 questions (10 x 3 marks = 30 marks)	
ii)	3 questions either or pattern (3 x 5 marks = 15 marks)	
Part B i)	Presentation of Industry Visit Project Report	25
ii)		
,	Interaction and Evaluation	30
	TOTAL	100

1092235773	Industrial Training	Summer	С	
Internship	industrial framing	Vacation	2	

Introduction

Industrial training is a crucial component of the diploma engineering curriculum, designed to bridge the gap between theoretical knowledge and practical application. Typically conducted during vacation periods, this two-week training program provides students with hands-on experience in their respective engineering fields. The primary objectives are to enhance practical skills, familiarize students with industry standards, and prepare them for future employment.

Two-week industrial training during vacation periods is an invaluable part of diploma engineering education. It not only equips students with practical skills but also provides a comprehensive understanding of the industry, preparing them for successful engineering careers.

Objectives

- Practical Exposure: Students gain direct exposure to real-world engineering practices, tools, and technologies.
- 2. Skill Enhancement: The training helps in developing technical and soft skills that are essential for professional growth.
- 3. Industry Insight: Students learn about the working environment, operational procedures, and challenges faced by industries.
- 4. Professional Networking: The training offers opportunities to interact with industry professionals, which can be beneficial for career prospects.
- 5. Application of Knowledge: It allows students to apply classroom knowledge to solve practical problems, enhancing their understanding and retention of engineering concepts.

Structure of the Training Program

- Orientation: Introduction to the company, its operations, and safety protocols.
- Project Assignment: Students are assigned specific projects or tasks relevant to their field of study.
- Supervision and Mentorship: Industry professionals guide and mentor students throughout the training.

1092235773	Industrial Training	Summer	С
Internship	industrial frammig	Vacation	2

- Skill Development Workshops: Sessions on technical skills, software tools, and industry best practices.
- Assessment and Feedback: Performance evaluations and constructive feedback to help students improve.

Benefits for Students

- Enhanced Employability: Practical experience makes students more attractive to potential employers.
- Confidence Building: Working in a real-world setting boosts confidence and professional demeanor.
- Clarified Career Goals: Exposure to various roles and responsibilities helps students define their career paths.

Course Outcomes

- CO 1: Demonstrate proficiency in using industrial machinery, tools, and software.
- CO 2: Able to identify, analyze, and solve engineering problems using industry-standard methods and practices.
- CO 3: Gain a comprehensive understanding of industrial manufacturing processes, quality control, and safety practices.
- CO 4: Exhibit improved communication, teamwork, and professional behavior in an industrial setting.
- CO 5: Apply theoretical concepts learned in their coursework to practical engineering tasks and projects.

Duties Responsibilities of the Faculty Mentor.

One faculty mentor should be assigned for every 30 students by the HOD / Principal. Faculty mentors shall play a crucial role in overseeing and guiding students during their industrial training program in Diploma engineering.

Pre-Training Responsibilities:

- 1. Orientation and Preparation:
 - Conduct orientation sessions to familiarize students with the objectives, expectations, and guidelines of the industrial training program.

1092235773	Industrial Training	Summer	С
Internship	industrial framing	Vacation	2

 Assist students in understanding the importance of industrial training in their academic and professional development.

2. Placement Coordination:

- Collaborate with the placement cell or industry liaison office to secure suitable training placements for students that align with their academic specialization and career interests.
- Facilitate communication between the institution and host organizations to ensure smooth coordination of training arrangements.

3. Training Plan Development:

- Help students develop a detailed training plan outlining learning objectives, tasks, and expected outcomes for the training period.
- Guide students in setting SMART (Specific, Measurable, Achievable, Relevant, Time-bound) goals for their training experience.

During Training Responsibilities:

4. Monitoring and Support:

- Regularly monitor the progress of students during their industrial training.
 Maintain communication with both students and industry supervisors to track performance and address any issues that may arise.
- Provide ongoing support and guidance to students, offering advice on technical challenges, professional conduct, and workplace etiquette.

5. Technical Guidance:

 Offer technical guidance and mentorship related to the specific engineering discipline or specialization of the students. Help them apply theoretical knowledge to practical situations encountered in the industry.

6. Problem-Solving Assistance:

 Assist students in overcoming obstacles or challenges encountered during their training. Encourage them to develop problem-solving skills and resilience in real-world engineering scenarios.

1092235773	Industrial Training	Summer	С
Internship	industrial frammig	Vacation	2

7. Feedback and Evaluation:

- Provide constructive feedback on students' performance based on reports, assessments, and observations gathered from industry supervisors.
- Evaluate students' achievements in relation to their training objectives and competencies developed during the program.

Post-Training Responsibilities:

8. Reflection and Debriefing:

- Conduct debriefing sessions with students to reflect on their training experiences, discuss lessons learned, and identify areas for further improvement.
- Help students articulate their learning outcomes and how these experiences contribute to their professional growth.

9. Documentation and Reporting:

- Ensure comprehensive documentation of students' training activities,
 achievements, and feedback received from industry supervisors.
- Prepare reports summarizing students' performance and submit these to relevant departments or committees for review and assessment.

10. Career Counseling:

 Provide career guidance and counseling to students based on their industrial training experiences. Assist them in leveraging these experiences for future job applications or further academic pursuits.

11. Continuous Improvement:

- Collaborate with industry partners to continuously improve the quality and relevance of the industrial training program.
- Incorporate feedback from students and industry supervisors to enhance the effectiveness of future training placements.

By fulfilling these duties and responsibilities, faculty mentors contribute significantly to the overall educational experience and professional development of Diploma engineering students during their industrial training program.

1092235773	Industrial Training	Summer	С
Internship	industrial frammig	Vacation	2

Instructions to the students

Before Starting Industrial Training:

1. Orientation and Preparation:

- Attend orientation sessions conducted by the institution or faculty mentors to understand the objectives, expectations, and guidelines of the industrial training program.
- Familiarize yourself with the specific policies, procedures, and safety regulations
 of the host organization where you will be undergoing training.

2. Setting Goals:

- Set clear and specific goals for your industrial training period. Define what skills,
 knowledge, and experiences you aim to gain during this time.
- Discuss your goals with your faculty mentor and seek their guidance in developing a training plan that aligns with your career aspirations.

Professional Attire and Conduct:

- Dress appropriately and professionally according to the standards of the industry and host organization.
- Maintain a positive attitude, demonstrate punctuality, and adhere to workplace etiquette and norms.

During Industrial Training:

4. Learning and Engagement:

- Actively engage in all assigned tasks and projects. Seek opportunities to learn new skills and technologies relevant to your field of study.
- Take initiative in asking questions, seeking clarification, and participating in discussions with supervisors and colleagues.

5. Adaptability and Flexibility:

- Adapt to the work environment and demonstrate flexibility in handling various responsibilities and challenges that arise during your training.
- Be open to different roles and tasks assigned to you, as this will broaden your experience and skill set.

1092235773	Industrial Training	Summer	С	
Internship	industrial frammig	Vacation	2	

6. Professionalism and Communication:

- Communicate effectively with supervisors, colleagues, and clients as required.
 Practice clear and concise verbal and written communication.
- Demonstrate professionalism in all interactions, respecting confidentiality, and adhering to company policies and procedures.

7. Safety and Compliance:

- Prioritize safety at all times. Familiarize yourself with safety protocols, procedures, and emergency exits in the workplace.
- Follow all safety guidelines and regulations to ensure your well-being and that of others around you.

After Completing Industrial Training:

8. Reflection and Documentation:

- Reflect on your training experience. Evaluate what you have learned, the challenges you faced, and how you have grown professionally.
- Maintain a journal or log documenting your daily activities, achievements, and lessons learned during the training period.

9. Feedback and Evaluation:

- Seek feedback from your industry supervisor and faculty mentor on your performance and areas for improvement.
- Use constructive feedback to enhance your skills and competencies for future career opportunities.

10. Career Planning:

- Use your industrial training experience to inform your career planning and decision-making process.
- Discuss your career goals and aspirations with your faculty mentor or career counselor for guidance on next steps after completing your diploma.

By following these instructions, Diploma engineering students can make the most of their industrial training experience, gain valuable insights into their chosen field, and prepare themselves effectively for future professional endeavors.

1092235773	Industrial Training	Summer	С	
Internship	industrial frammig	Vacation	2	

Attendance Certification

Every student has to get their attendance certified by the industrial supervisor in the prescribed form supplied to them. Students have also to put their signature on the form and submit it to the institution faculty mentor.

Training Reports

The students have to prepare reports: The report in the form of a diary to be submitted to the concerned faculty mentor of the institution. This will be reviewed while awarding Internal assessment.

Industrial Training Diary

Students are required to maintain the record of day-to-day work done. Such a record is called Industrial training Diary. Students have to write this report regularly. All days for the week should be accounted for clearly giving attendance particulars (Presence, absence, Leave, Holidays etc.). The concern of the Industrial supervisor is to periodically check these progress reports.

In addition to the diary, students are required to submit a comprehensive report on training with details of the organisation where the training was undergone after attestation by the supervisors. The comprehensive report should incorporate study of plant / product / process / construction along with intensive in-depth study on any one of the topics such as processes, methods, tooling, construction and equipment, highlighting aspects of quality, productivity and system. The comprehensive report should be completed in the last week of Industrial training. Any data, drawings etc. should be incorporated with the consent of the Organisation.

1092235773	Industrial Training	Summer	С
Internship	industrial frammig	Vacation	2

Scheme of Evaluation

Internal Assessment

Students should be assessed for 40 Marks by industry supervisor and polytechnic faculty mentor for the Internal Assessment.

SI. No.	Description	Marks			
А	Punctuality and regularity. (Attendance)	10			
В	B Level / proficiency of practical skills acquired. Initiative in learning / working at site				
С	Self expression / communication skills. Interpersonal skills / Human Relation.	10			
D	Report and Presentation.	10			
	Total	40			

End Semester Examination - Project Exam

Students should be assessed for 100 Marks both by the internal examiner and external examiner appointed by the Chairman Board of Examinations after the completion of industrial training. The marks scored will be converted to 60 marks for the End Semester Examination.

Scheme of Evaluation

SI. No.	SI. No. Description			
А	Daily Activity Report and Attendance certificate.	20		
В	Comprehensive report on Internship, Relevant Internship Certificate from the concerned department.	30		
С	Presentation by the student at the end of the Internship.	30		
D	Viva Voce	20		
	Total	100		

1091236111	Civil Aviation Requirements	L	Т	Р	С
THEORY	Civil Aviation Requirements	3	0	0	3

Introduction

Diploma holders in Aircraft Maintenance must have a sound knowledge of various Aircraft Rules, 1937 VOL 1,. Aircraft Rules, 1937 VOL 3, AIRCRAFT MAINTENANCE Information Circular CAR - Section - 1, 2, & 8 SMS,CAR - 21, M, 145, 66 & 147 Special Federal Aviation Regulations (SFARs) - 14 CFR, SFAR 88 & JAA TGL 47,8. Airworthiness Procedure Manual .This subject is designed to give them an insight of rules and regulations.

Course Objectives

The objective of this course is to enable the student to

Study the basic knowledge of Regulatory Framework, CAR-M, CAR-145 Approved Maintenance Organizations, CAR-66 Certifying Staff --- Maintenance, CAR-147

To learn about Approved Maintenance Training Organization, Aircraft Operations and Aircraft Certification,

To understand Safety Management System, Fuel Tank Safety, Applicable National and International Requirements.

Course Outcomes

On successful completion of this course, the student will be able to

- CO 1: Understand the significance of the Regulatory framework.
- CO 2: Understand the significance of the CAR approval of maintenance.
- CO 3: Describe air operator certificate.
- CO 4: Describe Aircraft certification.
- CO 5: Understand the maintenance and documentation.

Pre-requisites

Nil

1091236111	Civil Aviation Requirements	L	Т	Р	С
THEORY	Civil Aviation Requirements	3	0	0	3

CO/PO Mapping

CO / PO	P01	P02	P03	P04	P05	P06	P07
C01	2	2	-	1	-	-	-
C02	2	2	1	1	-	-	-
C03	2	2	1	1	-	-	-
C04	2	2	-	1	-	-	-
C05	2	2	-	2	2	-	-

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

Instructional Strategy

- Engage and Motivate: Instructors should actively engage students to boost their learning confidence.
- Real-World Relevance: Incorporate relatable, real-life examples and engineering applications to help students understand and appreciate course concepts.
- Interactive Learning: Utilize demonstrations and plan interactive student activities for an engaging learning experience.
- Application-Based Learning: Employ a theory-demonstrate-practice-activity strategy throughout the course to ensure outcome-driven learning and employability.
- Simulation and Real-World Practice: Conduct demonstrations and hands-on activities in a simulated environment, transitioning to real-world scenarios when possible.
- Encourage Critical Analysis: Foster an environment where students can honestly assess experiment outcomes and analyze potential sources of error in case of

1091236111	Civil Aviation Requirements	L	Т	Р	С
THEORY	Civil Aviation Requirements	3	0	0	3

discrepancies.

- Regularly revise the core concepts of structure as they are fundamental to understanding aircraft.
- Focus on understanding the practical applications and operational principles rather than memorizing equations.
- Engage with practical lab sessions or virtual lab simulations to gain hands-on experience with this structure.

Assessment Methodology

	С	ontinuous Asses	sment (40 marks	s)	End Semester
	CA1	CA2	CA3	CA4	Examination (60 marks)
Mode	Written test (Two units)	Written test (Another Two units)	Quiz MCQ (Online / Offline)	Model Examination	Written Examination
Duration	2 Periods	2 Periods	1 Hour	3 Hours	3 Hours
Exam Marks	50	50	60	100	100
Converted to	15	15	5	20	60
Marks	1	5	5	20	60
Tentative Schedule	6th Week	12th Week	13-14th Week	16th Week	

1091236111	Civil Aviation Requirements	L	Т	Р	С
THEORY	Civil Aviation Requirements	3	0	0	3

CA1 and CA2: Assessment written test should be conducted for 50 Marks for two units. The marks scored will be converted to 15 Marks. Best of one will be considered for the internal assessment of 15 Marks.

CA1and CA2, Assessment test should be conducted for two units as below.

Answer five questions (5 X 10 Marks = 50 Marks).

Eight questions will be asked, students should write Five questions. Each unit Four questions can be asked. Each question may have subdivisions. Maximum two subdivisions shall be permitted.

CA3: 60 MCQ can be asked by covering the entire portion. It may be conducted by Online / Offline. The answer scripts of every student (online / offline) for this assessment should be kept for records and future verification. The marks scored should be converted to 5 marks for the internal assessment.

CA4: Model examination should be conducted as per the end semester question pattern. The marks should be converted to 20 marks for the internal assessment.

Question Pattern:

Answer Ten questions by selecting two questions from each unit. Each question carries 10 marks each.

Four questions will be asked from every unit, students should write any two questions. The question may have two subdivisions only.

Syllabus Contents

Unit I	Regulatory Framework	8
Role of International Civil Aviation Organization; Introduction to Chicago Convention,		n, 1944;
Introduction to ICAO, Convention, Standards and Recommended Practices; The Aircraf		aft Act,
1934; The	Aircraft Rules, 1937 - Part - I, II, III, IV, VI, VII, IX, XIIA, XIIB,XIIC, XIII, XIV.	

1091236111	Civil Aviation Requirements	L	Т	Р	С
THEORY	Civil Aviation Requirements	3	0	0	3

Role of the DGCA; Relationship between CAR-21, CAR-M, CAR-145, CAR-66. CAR 147; AIRCRAFT MAINTENANCE Information Circulars (Applicable to Aircraft Maintenance and Release); CAR - Sections 1 and 2.

CAR-M:

Detail understanding of CAR M provisions related to Continuing Airworthiness; Detailed understanding of CAR.

Unit II	CAR-145 — Approved Maintenance Organizations	8
		l

Detailed understanding of CAR-145 and CAR M Subpart F.

CAR-66 Certifying Staff - Maintenance

Detailed understanding of CAR-66.

Unit III	CAR-147 Approved Maintenance Training Organization	8

Detailed understanding of CAR-147.

Aircraft Operations:

Commercial Air Transport/Commercial Operations; Air Operators Certificates; Operators Responsibilities, in particular regarding continuing airworthiness and maintenance; Documents to be carried on board; Aircraft Placarding (Markings);

Unit IV	Aircraft Certification	8
---------	------------------------	---

- (a) General Certification rules: such as FAA & EACS 23/25/27/29; Type Certification Supplemental Type Certification; Type Approval; CAR-21 Sub-Part F, G, H, I, M, P & Q. Aircraft Modifications and repairs approval and certification; permit to fly requirements
- (b) Documents Certificate of Airworthiness; Certificate of Registration; Noise Certificate; Weight Schedule; Radio Station Licence and Approval.

Safety Management System

State Safety Programme; Basic Safety Concepts; Hazards & Safety Risks; SMS Operation; SMS Safety performance; Safety Assurance.

1091236111	Civil Aviation Requirements	L	Т	Р	С
THEORY	Civil Aviation Requirements	3	0	0	3

Fuel Tank Safety

Special Federal Aviation Regulations (SFARs) from 14 CFR SFAR 88 of the FAA and of JAA TGL 47; Concept of CDCCL, Airworthiness Limitations Items (ALI).

UNIT V	Applicable National and International Requirements	8
--------	--	---

Introduction to ICAO, FAR, EASA Regulations - Aircraft Maintenance and certification.

- (a) Maintenance Programme, Maintenance checks and inspections; Master. Minimum Equipment Lists, Minimum Equipment List; Dispatch Deviation Lists; Airworthiness Directives; Service Bulletins, manufacturers service information; Modifications and repairs;
- Maintenance documentation: maintenance manuals, structural repair manual, illustrated parts catalogue, etc.;
- (b) Continuing airworthiness; Test flights; ETOPS /EDTO, maintenance and dispatch requirements; RVSM, maintenance and dispatch requirements; RNP, MNPS Operations All Weather Operations; Category 2/3 operations and minimum equipment, maintenance, training and certification requirements

Test + Revision	10
TOTAL HOURS	60

Suggested list of Students Activity,

- Presentation/Seminars by students on any recent technological developments based on the course.
- Periodic class quizzes conducted on a weekly / fortnightly based on the course.
- Mini project that shall be an extension of any practical lab exercise to real-world application.

1091236111	Civil Aviation Requirements	L	Т	Р	С
THEORY	Civil Aviation Requirements	3	0	0	3

Text Book for Reference:

- 1. The Aircraft Act, 1934.
- 2. The Aircraft Rules, 1937 VOL 1.
- 3. The Aircraft Rules, 1937 VOL 3.
- 4. AIRCRAFT MAINTENANCE Information Circular.
- 5. CAR Section 1, 2, & 8 SMS.
- 6. CAR 21, M, 145, 66 & 147.
- 7. Special Federal Aviation Regulations (SFARs) 14 CFR, SFAR 88 & JAA TGL 47.
- 8. Airworthiness Procedure Manual.

1091236111	Civil Avietien Demoirements	L	Т	Р	С
THEORY	Civil Aviation Requirements	3	0	0	3

END SEMESTER QUESTION PATTERN - Theory Exam

Duration: 3 Hrs. Max. Marks: 100

Note: Answer Ten questions by selecting two questions from each unit. Each question carries 10 marks each.

Instruction to the Question Setters

Four questions will be asked from every unit, students should write any two questions for 10 marks. The question may have two subdivisions only.

6000236112	Entropropourchin	L	Т	Р	С
THEORY	Entrepreneurship	3	0	0	3

Introduction

Development of a diploma curriculum is a dynamic process responsive to the society and reflecting the needs and aspirations of its learners. Fast changing society deserves changes in educational curriculum particularly to establish relevance to emerging socio-economic environments; to ensure equity of opportunity and participation and finally promote concern for excellence. In this context the course on entrepreneurship and start ups aims at instilling and stimulating human urge for excellence by realizing individual potential for generating and putting to use the inputs relevant to social prosperity and thereby ensuring good means of living for every individual, providing jobs and developing the Indian economy.

Course Objectives

After completing this subject, the student will be able to

- Acquire entrepreneurial spirit and resourcefulness
- Familiarize Acquire knowledge about the business idea and product selection
- Analyze the banking and financial institutions
- Understand the pricing policy and cost analysis
- Get knowledge about the business plan preparation

Course Outcomes

CO1: Explain the process of entrepreneurship

CO2: Analyse the importance of generation of ideas and product selection

CO3: Familiarization of various financial and non financial schemes

CO4: Acquire various cost components to arrive pricing of the product

CO5: Learn the preparation of project feasibility report

Pre-requisites

Knowledge of basics of Engineering and Industrial engineering

6000236112	Entrepreneurship	L	Т	Р	С
THEORY	Entrepreneursinp	3	0	0	3

CO/PO Mapping

CO / PO	P01	P02	P03	P04	P05	P06	P07
C01	-	-	-	-	3	1	3
C02	-	-	-	-	3	3	3
C03	-	-	-	1	-	3	2
CO4	-	1	3	3	2	3	2
CO5	-	2	3	3	3	3	3

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

Instructional Strategy

- Engage and Motivate: Instructors should actively engage students to boost their learning confidence.
- Real-World Relevance: Incorporate relatable, real-life examples and applications to help students understand and appreciate course concepts.
- Interactive Learning: Utilize demonstrations and plan interactive student activities for an engaging learning experience.
- Application-Based Learning: Employ a theory-demonstrate-practice- activity strategy throughout the course to ensure outcome-driven learning and employability.
- Simulation and Real-World Practice: Conduct demonstrations and hands-on activities in a simulated environment, transitioning to real- world scenarios when possible.

6000236112	Entrepreneurship	L	Т	Р	С
THEORY	Entrepreneurship	3	0	0	3

Assessment Methodology

	С	End Semester			
	CA1	CA2	CA3	CA4	Examination (60 marks)
Mode	Written test (Two units)	Written test (Another Two units)	Quiz MCQ (Online / Offline)	Model Examination	Written Examination
Duration	2 Periods	2 Periods	1 Hour	3 Hours	3 Hours
Exam Marks	50	50	60	100	100
Converted to	15	15	5	20	60
Marks	15		5	20	60
Tentative Schedule	6th Week	12th Week	13-14th Week	16th Week	

CA1 and CA2: Assessment written test should be conducted for 50 Marks for two units. The marks scored will be converted to 15 Marks. Best of one will be considered for the internal assessment of 15 Marks.

CA1and CA2, Assessment test should be conducted for two units as below.

 $(5 \times 10 \text{ Marks} = 50 \text{ Marks}).$

Eight questions will be asked, students should write Five questions. Each unit Four questions can be asked. Each question may have subdivisions. Maximum two subdivisions shall be permitted.

6000236112	Entropropourchin	L	Т	Р	С
THEORY	- Entrepreneurship	3	0	0	3

CA3: 60 MCQ can be asked by covering the entire portion. It may be conducted by Online / Offline. The answer scripts of every student (online / offline) for this assessment should be kept for records and future verification. The marks scored should be converted to 5 marks for the internal assessment.

CA4: Model examination should be conducted as per the end semester question pattern. The marks should be converted to 20 marks for the internal assessment.

Question Pattern:

Answer Ten questions by selecting two questions from each unit. Each question carries 10 marks each.

Four questions will be asked from every unit, students should write any two questions. The question may have two subdivisions only.

Syllabus Contents

Unit I	Entrepreneurship - Introduction and Process				
Concept of	of entrepreneurship - Importance, Myths about Entrepreneurship, Pros and	7			
Cons of	Entrepreneurship, Process of Entrepreneurship, , Competencies and				
characteri	stics of an entrepreneur -, Ethical Entrepreneurship, Entrepreneurial				
Values an	d Attitudes, Creativity, Innovation and entrepreneurship- Entrepreneurs - as				
problem s	colvers, Mindset of an employee and an entrepreneur, - Risk				
Taking-Co	ncepts				
Unit II	Business Idea				
Types of	Business: Manufacturing, Trading and Services, Stakeholders: sellers,	7			
vendors a	nd consumers and Competitors, E- commerce Business Models, business				
idea gene	ration -Types of Resources - Human, Capital and Entrepreneurial tools and				
resources, etc.,- setting business goals- Patent, copyright and Intellectual property					
rights, Customer Relations and Vendor Management, -Business Ideas vs. Business					
Opportunities, Opportunity – SWOT ANALYSIS of a business idea - Business Failure					
- causes	and remedies Types of business risks,				
L					

6000236112	Entrepreneurship	L	Т	Р	С
THEORY	Entrepreneursinp	3	0	0	3

Unit III	Banking				
Size and capital based classification of business enterprises- Role of financial					
institutions, Role of Government policy, Entrepreneurial support systems, Incentive					
schemes for state government, and Incentive schemes for Central governments.					
Unit IV	Pricing and Cost Analysis				
Types of	Costs - Variable - Fixed- Operational Costs - Break Even Analysis - for	7			
single pro	duct or service, -financial Business Case Study, Understand the meaning				
and conc	ept of the term Cash Inflow and Cash Outflow- Pricing- Calculate Per Unit				
Cost of a	single product, , Understand the importance and preparation of Income				
Statement	t, Prepare a Cash Flow Projection- Factors affecting pricing GST.				
Unit V	Business Plan Preparation				
Feasibility	Report – Technical analysis, financial analysis- Market Research -	7			
Concept,	mportance and Process- tools for market research- Market Sensing and				
Testing, M	larketing and Sales strategy, Digital marketing, Branding - Business name,				
logo, tag line, Promotion strategy, Business Plan Preparation, -Concept and					
Importanc	e, , Execution of Business Plan.				
	Revision + Test	10			
	TOTAL HOURS	45			

Suggested list of Students Activity.

- 1. Students can explore app development or web design. They'll learn about technology, user experience, and marketing.
- 2. Hosting events, workshops, or conferences allows students to practice project management, networking, and marketing skills.
- 3. Encourage students to address social or environmental issues through innovative business solutions. This fosters empathy and creativity.

6000236112	Entropropourchin	L	Т	Р	С
THEORY	Entrepreneurship	3	0	0	3

- 4. Part of entrepreneurship clubs or organizations provides networking opportunities, mentorship, and exposure to real-world challenges.
- 5. Competitions like business plan contests or pitch events allow students to showcase their ideas and receive feedback.
- 6. Students can create and sell handmade crafts, artwork, or other products. This teaches them about production, pricing, and customer relations.
- 7. Students can provide consulting services in areas they're knowledgeable about, such as social media marketing or financial planning.
- 8. Encourage students to create and manage their own small business or offer freelance services. This hands-on experience helps them understand various aspects of entrepreneurship.

Text and Reference Books:

- 1. G.K. Varshney, Fundamentals of Entrepreneurship, Sahitya Bhawan Publications, Agra., 2019.
- 2. H.Nandan, Fundamentals of Entrepreneurship, Prentice Hall India Learning Private Limited, Third Edition, 2013.
- 3. R.K. Singal, Entrepreneurship Development & Management, S K Kataria and Sons, 2013.

Web Reference:

- https://ocw.mit.edu/ courses/15-390-new-enterprises-spring-2013/resources/lecture-1/
- https://onlinecourses.nptel.ac.in/noc20_ge08/preview

END SEMESTER QUESTION PATTERN - Theory Exam

Duration: 3 Hours. Maximum Marks: 100

Note: Answer Ten questions by selecting Two questions from each unit. Each question carries 10 marks.

Instruction to the question setters.

Each unit should have four questions. Each question carries 10 Marks. Each question may have two subdivisions only.

1091236113	Aimmenthin and Demoirements	L	Т	Р	С
THEORY	Airworthiness Requirements	3	0	0	3

Introduction

Diploma holders in Aircraft Maintenance must have a sound knowledge of various The Indian Aircraft Act and the Rules, Manual of Civil Aviation, DEF STANDARD 970

Civil Airworthiness Requirements. AIRCRAFT MAINTENANCE Information Circulars (relating to Airworthiness), Advisory Circulars - DGCA, Civil Aircraft Airworthiness Information and Procedures (CAP 562).

Course Objectives

The objective of this course is to enable the student to

To Study the basic knowledge of Aircraft Rules, AME Licenses, Testing of Flight and Certification.

To learn about different types of aircraft maintenance aspects and its certification process.

To understand the aircraft maintenance manual, schedule, Technical publication and aircraft registration process.

To study Accident investigations and rules of ICAO and IATA.

Course Outcomes

On successful completion of this course, the student will be able to

- CO 1: Understand the significance of Airworthiness.
- CO 2: Understand the significance of the AME licence.
- CO 3: Describe the test flight and certification.
- CO 4: Describe the aircraft maintenance products..
- CO 5: Understand the accident investigation procedure.

Pre-requisites

Nil

1091236113	Airweithiness Deguirements	L	Т	Р	С
THEORY	Airworthiness Requirements	3	0	0	3

CO/PO Mapping

CO / PO	P01	P02	P03	P04	P05	P06	P07
C01	2	2	-	1	-	-	-
C02	2	2	1	1	-	-	-
C03	2	2	1	1	-	-	-
C04	2	2	-	-	2	-	-
CO5	2	2	-	-	1	-	-

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

Instructional Strategy

- Engage and Motivate: Instructors should actively engage students to boost their learning confidence.
- Real-World Relevance: Incorporate relatable, real-life examples and engineering applications to help students understand and appreciate course concepts.
- Interactive Learning: Utilize demonstrations and plan interactive student activities for an engaging learning experience.
- Application-Based Learning: Employ a theory-demonstrate-practice-activity strategy throughout the course to ensure outcome-driven learning and employability.
- Simulation and Real-World Practice: Conduct demonstrations and hands-on activities in a simulated environment, transitioning to real-world scenarios when possible.
- Encourage Critical Analysis: Foster an environment where students can honestly assess experiment outcomes and analyze potential sources of error in case of

1091236113	Airworthiness Requirements	L	Т	Р	С
THEORY	All worthiness Requirements	3	0	0	3

discrepancies.

- Regularly revise the core concepts of structure as they are fundamental to understanding aircraft.
- Focus on understanding the practical applications and operational principles rather than memorizing equations.
- Engage with practical lab sessions or virtual lab simulations to gain hands-on experience with this structure.

Assessment Methodology

	С	End Semester			
	CA1	CA2	CA3	CA4	Examination (60 marks)
Mode	Written test (Two units)	Written test (Another Two units)	Quiz MCQ (Online / Offline)	Model Examination	Written Examination
Duration	2 Periods	2 Periods	1 Hour	3 Hours	3 Hours
Exam Marks	50	50	60	100	100
Converted to	15	15	5	20	60
Marks	15		5	20	60
Tentative Schedule	6th Week	12th Week	13-14th Week	16th Week	

1091236113	Airworthiness Requirements	L	Т	Р	С
THEORY	All worthiness Requirements	3	0	0	3

CA1 and CA2: Assessment written test should be conducted for 50 Marks for two units. The marks scored will be converted to 15 Marks. Best of one will be considered for the internal assessment of 15 Marks.

CA1and CA2, Assessment test should be conducted for two units as below.

Answer five questions (5 X 10 Marks = 50 Marks).

standards. Military standards and specifications.

Eight questions will be asked, students should write Five questions. Each unit Four questions can be asked. Each question may have subdivisions. Maximum two subdivisions shall be permitted.

CA3: 60 MCQ can be asked by covering the entire portion. It may be conducted by Online / Offline. The answer scripts of every student (online / offline) for this assessment should be kept for records and future verification. The marks scored should be converted to 5 marks for the internal assessment.

CA4: Model examination should be conducted as per the end semester question pattern. The marks should be converted to 20 marks for the internal assessment.

Question Pattern:

Answer Ten questions by selecting two questions from each unit. Each question carries 10 marks each.

Four questions will be asked from every unit, students should write any two questions. The question may have two subdivisions only.

Syllabus Contents

Unit I	Introduction	7
Aircraft ru	ules as far as they relate to airworthiness and safety of aircraft. Airwor	thiness
requireme	nts for civil and military aircraft CAA, FAA, JAR and ICAO, regulations, I)efense

1091236113	Airworthiness Requirements	L	Т	Р	С
THEORY	All worthiness Requirements	3	0	0	3

Unit II	Privileges and responsibilities	7						
Various c	Various categories of AME license and approved persons. Knowledge of mandatory							
document	s like certificate of Registration, certificate of Airworthiness - conditions o	of issue						
and validit	y. Export certificate of Airworthiness. Knowledge of Log Book, Journey Log	g Book,						
Technical	Log Book, etc.							
Unit III	Procedure for development	7						
Test fligh	ts and certification. Certificate of Flight release, Certificate of Mainte	enance,						
Approved	Certificates. Technical Publications, Aircraft Manual, Flight Manual,	Aircraft						
Schedules	. Registration Procedure, Certification, Identification and Marking of Aircraft	.);						
Unit IV	Aircraft Certification	7						
Modificati	ons, concessions, airworthiness directives, service bulletins. Crew traini	ng and						
their licen	ses, approved inspection, approved materials, identification of approved ma	iterials.						
Bonded a	nd quarantine stores. Storage of various aircraft maintenance products like	rubber						
goods, var	ious fluids.							
UNIT V	Accident investigation procedures	7						
Circumsta	nces under which C of A is suspended. ICAO and IATA regulations, Chica	go and						
Warsaw c	Warsaw conventions.							
	Test + Revision 10							
	TOTAL HOURS 45							

Suggested list of Students Activity,

- Presentation/Seminars by students on any recent technological developments based on the course.
- Periodic class quizzes conducted on a weekly / fortnightly based on the course.

1091236113	Airworthiness Requirements	L	Т	Р	С
THEORY	All worthiness Requirements	3	0	0	3

 Mini project that shall be an extension of any practical lab exercise to real-world application.

Text Book for Reference:

- 1. The Indian Aircraft Act and the Rules.
- 2. Manual of Civil Aviation.
- 3. DEF STANDARD 970.
- 4. Gran E L, Statistical Quality Control, McGraw Hill.
- 5. Civil Airworthiness Requirements.
- 6. AIRCRAFT MAINTENANCE Information Circulars (relating to Airworthiness).
- 7. Advisory Circulars DGCA.
- 8. Civil Aircraft Airworthiness Information and Procedures (CAP 562).
- 9. Civil Aviation Requirements Section 2 Airworthiness.

END SEMESTER QUESTION PATTERN - Theory Exam

Duration: 3 Hrs. Max. Marks: 100

Note: Answer Ten questions by selecting two questions from each unit. Each question carries 10 marks each.

Instruction to the Question Setters

Four questions will be asked from every unit, students should write any two questions for 10 marks. The question may have two subdivisions only.

1091236241	Helicopter Modeling	L	Т	Р	С
PRACTICUM	Helicopter Modelling	1	0	4	3

Introduction:

This course forms the first exposure to the discipline of Aeronautical Engineering. It starts with the familiarization of helicopters. The subject is built up slowly and steadily by introducing the terminology and basis of Helicopter mechanics, structures, power plant, systems etc. At the end of the subject, the student will be fully acquainted with the basics of Aeronautical Engineering.

Course Objectives:

The objective of this course is to enable the student to

 To Study the basic knowledge of Helicopter Construction, Helicopter Engine Systems and Helicopter Maintenance and General Precautions.

Course Outcomes:

On successful completion of this course, the student will be able to

CO1: Describe the configurations of Helicopters.

CO2: Understand the construction of Helicopters.

CO3: Learn the Helicopter systems.

CO4: Describe the Helicopter engine system.

CO5: Demonstrate the Helicopter maintenance.

1091236241	Helicopter Modeling	L	Т	Р	С	
PRACTICUM	Helicopter Modelling	1	0	4	3]

CO/PO Mapping

CO / PO	P01	P02	P03	P04	P05	P06	P07
C01	3	-	-	2	2	-	1
C02	3	2	1	2	2	-	1
C03	3	-	1	1	1	-	1
C04	3	3	1	1	1	-	1
CO5	3	2	1	2	2	-	1

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

Instructional Strategy:

Engage and Motivate: Instructors should actively engage students to boost their learning confidence.

Real-World Relevance: Incorporate relatable, real-life examples and engineering applications to help students understand and appreciate course concepts.

Interactive Learning: Utilize demonstrations and plan interactive student activities for an engaging learning experience.

Application-Based Learning: Employ a theory-demonstrate-practice-activity strategy throughout the course to ensure outcome-driven learning and employability.

Simulation and Real-World Practice: Conduct demonstrations and hands-on activities in a simulated environment, transitioning to real-world scenarios when possible.

Encourage Critical Analysis: Foster an environment where students can honestly assess experiment outcomes and analyze potential sources of error in case of discrepancies.

1091236241	Helicopter Modeling	L	Т	Р	С
PRACTICUM	Helicopter Modelling	1	0	4	3

Assessment Methodology:

	Co	(s)	End		
	CA1	CA2	CA3	CA4	Semester Examination (60 marks)
Mode	Practical	Practical	Written Test	Practical	Practical
Wiode	Test	Test	Theory	Test	Examination
Portion	Cycle I	Cycle II	All Units	All	All
lordon	Experiments	Experiments	All Office	Experiments	Experiments
Duration	2 Periods	2 Periods	3 Hours	3 Hours	3 hours
Exam Marks	60	60	100	100	100
Converted to Marks	10	10	15	15	60
Marks	1	0	15	15	60
Tentative Schedule	7th Week	14th Week	15th Week	16th Week	

Note:

• CA1 and CA2: All the exercises/experiments should be completed as per the portions above and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation as below. The marks awarded shall be converted to 10 Marks for each assessment test. Best of one will be considered for the internal assessment of 10 Marks.

Practical documents should be maintained for every experiment immediately after completion of the practice. The practical document should be submitted for the practical test. The same should be evaluated for 10 Marks for each exercise/experiment. The total

1091236241	Helicopter Modeling	L	Т	Р	С
PRACTICUM	Helicopter Modelling	1	0	4	3

marks awarded should be converted to 10 Marks for the practical test as per the scheme of evaluation as below.

The details of the documents to be prepared as per the instruction below.

Each experiment should be completed on the day of practice. The same shall be evaluated for 10 marks on the day or next day of practice before commencement of the next experiment.

This documentation can be carried out in a separate notebook or a printed manual or a file with documents. The student should draw the Circuit Diagram and take readings, do calculations and prepare the Graph/Result manually in the documents.

The detailed date of the practices and its evaluations should be maintained in the course logbook. The log book and the practical documents should be submitted for the verification by the Flying Squad and DOTE Official.

SCHEME OF EVALUATION

PART	DESCRIPTION	MARKS
А	Assembling	15
В	Servicing	20
С	Disassembling	15
	TOTAL	50
D	Practical Documents (As per the portions)	10
	Total Marks	60

 CA 3: Written Test for complete theory portions should be conducted for 100 Marks as per the question pattern below. The marks scored will be converted to 15 Marks for internal assessment.

1091236241	Helicopter Modeling	L	Т	Р	С
PRACTICUM	Helicopter Modelling	1	0	4	3

Question pattern - Written Test Theory

Description		Marks		
Part – A	30 MCQ Questions.	30 X 1 Mark	30 Marks	
Part – B	7 Questions to be answered out of 10 Questions.	7 X 10 Marks	70 Marks	
TOTAL			100 Marks	

CA 4: All the exercises/experiments should be completed and kept for the practical test.
The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation below. After completion of all the exercises the practical test should be conducted as per End Semester Examination question pattern scheme of evaluation. The marks awarded should be converted to 15 Marks for the internal assessment.

SCHEME OF EVALUATION

Model Practical Examination and End Semester Examination - Practical Exam

PART	DESCRIPTION	MARKS
Α	Procedure	10
В	Assembling	15
С	Servicing	20
D	Disassembling	15
E	Written Test	30
F	Viva Voce	10
	TOTAL	100

Note: For the written test 30 MCQ shall be asked from the theory portions.

1091236241	Helicopter Modeling	L	Т	Р	С
PRACTICUM	Helicopter Wodeling	1	0	4	3

Syllabus Contents

Theory Portion				
UNIT - I INTRODUCTION TO HELICOPTETRS	3			
History of development of Helicopter - Glossary of terms used in helicopter technology	ogy and			
their definition- Various configurations of helicopter Various controls, rotors and e	engines			
with their type currently in use of helicopter.				
UNIT - II : HELICOPTER CONSTRUCTION	3			
Main Structural components of helicopter their types, material, purpose and l	ocation			
Fuselage(cabin, centre section, ,tail boom Stabilizer Landing gears.				
UNIT - III HELICOPTER SYSTEMS	3			
Main mechanical systems their construction , purpose and location - Transmission s	ystem -			
Main gear box - Tail gear box - Clutch - Freewheeling unit - Main rotor head - Tail drive	e shaft -			
Main drive shaft- Main Flight Control Systems their purpose, construction and lo	cation -			
Collective Pitch Control - Throttle Control - Governor - Cyclic Pitch Controls - Anti	i torque			
pedals - Swash plates - Hydraulic System - Purpose components and their function.				
UNIT - IV HELICOPTER ENGINE SYSTEMS	3			
Engines :Purpose of engines - Types,construction,uses - Fuel Systems - Fuel supply S	System -			
Engine fuel control system(For reciprocating and turbine engines) - Lubricating syst	tem, its			
purpose and functioning.				
UNIT - V: HELICOPTER MAINTENANCE AND GENERAL PRECAUTIONS	3			
Types of Inspections, Maintenance done on Helicopters - Introduction to Rigging and				
Control setting - Precautions to be observed during - Jacking - Towing - Braking - Supply				
of ground power- Refueling and Defueling.				
Practical Exercises:				
Ex.No Name of the Experiment	Period			
Develop a Model of Helicopter using balsa wood with four to five members group.	50			

1091236241	Helicopter Modeling	L	Т	Р	С
PRACTICUM	Hencopter Modeling	1	0	4	3

Practice + Test + Revision	10
Total	75

Suggested List of Students Activity:

Presentation/Seminars by students on any recent technological developments based on the course.

Periodic class quizzes conducted on a weekly/fortnightly based on the course.

Text book for Reference:

- 1. 1. The Helicopter -John Fay
- 2. 2. Training Notes on Chetak Helicopter
- 3. 3 .Helicopter Engineering- Lalit Gupta
- 4. 4.Basic Helicopter Maintenance- Joseph Scchafer
- 5. 5 .Principles of Helicopter Flight-WJ Wagttendonk

Equipment / Facilities required to conduct the Practical Course.

S.No	Name of the Equipment's	Quantity Required
1.	Serviceable Helicopter	1 No
2.	Assembling and dis assembling Tools	1 No

1091236241	Holiooptor Modeling	L	Т	Р	С
PRACTICUM	Helicopter Modeling	1	0	4	3

END SEMESTER EXAMINATIONS - PRACTICAL EXAM

Note:

All the exercises should be completed before the Board Practical Examinations. End Semester Practical examination should be conducted for all the exercises / experiments for 100 Marks. Students will be permitted to select any one exercise by lot or question paper supplied by the DOTE Exam section shall be used. The record of work done by the student should be submitted with a Bonafide Certificate.

SCHEME OF EVALUATION

PART	DESCRIPTION	MARKS	
А	Procedure	10	
В	Assembling	15	
С	Servicing	20	
D	Disassembling	15	
E	Written Test	30	
F	Viva Voce	10	
	TOTAL	100	

Note: For the written test 30 MCQ shall be asked from the theory portions.

1091236242	Rocket Modeling	L	Т	Р	С
PRACTICUM		1	0	4	3

Introduction:

The subject deals with the Rocket engineering science & technology and its applications. It covers the types of rocket engines and how it works. Students will learn about the testing of rockets. They also study rocket dynamics and control systems of rockets.

Course Objectives:

Students will gain a basic understanding of rockets: how they work, why we have so many different types, and why they are important in space exploration.

To learn about the history of rockets and key rocketry pioneers.

To study different types of propulsion and control systems.

Course Outcomes:

On successful completion of this course, the student will be able to

CO1: Describe the history of rockets.

CO2: Understand how rockets work.

CO3: Learn working of rocket engines.

CO4: Describe the type of rocket engine.

CO5: Demonstrate the testing of rocket.

1091236242	Rocket Modeling	L	Т	Р	С
PRACTICUM	Rocket Wodeling	1	0	4	3

CO/PO Mapping

CO / PO	P01	P02	P03	P04	P05	P06	P07
C01	3	-	-	2	2		1
C02	3	2	2	2	2		1
C03	3	-	1	1	2		1
C04	3	3	1	1	2		1
C05	3	2	3	2	2		1

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

Instructional Strategy:

Engage and Motivate: Instructors should actively engage students to boost their learning confidence.

Real-World Relevance: Incorporate relatable, real-life examples and engineering applications to help students understand and appreciate course concepts.

Interactive Learning: Utilize demonstrations and plan interactive student activities for an engaging learning experience.

Application-Based Learning: Employ a theory-demonstrate-practice-activity strategy throughout the course to ensure outcome-driven learning and employability.

Simulation and Real-World Practice: Conduct demonstrations and hands-on activities in a simulated environment, transitioning to real-world scenarios when possible.

Encourage Critical Analysis: Foster an environment where students can honestly assess experiment outcomes and analyze potential sources of error in case of discrepancies.

1091236242	Rocket Modeling	L	Т	Р	С
PRACTICUM	Rocket Wodeling	1	0	4	3

Assessment Methodology:

	Co	ontinuous Asses	sment (40 mark	(s)	End
	CA1	CA2	CA3	CA4	Semester Examination (60 marks)
Mode	Practical	Practical	Written Test	Practical	Practical
Widde	Test	Test	Theory	Test	Examination
Portion	Cycle I	Cycle II	All Units	All	All
l	Experiments	Experiments	All Ollits	Experiments	Experiments
Duration	2 Periods	2 Periods	3 Hours	3 Hours	3 hours
Exam Marks	60	60	100	100	100
Converted to	10	10	15	15	60
Marks	10	10	10	10	
Marks	1	0	15	15	60
Tentative	7th Week	14th Week	15th Week	16th Week	
Schedule	, air Freek	THUI WOOK	TOTAL FREEK	TOUT WEEK	

Note:

CA1 and CA2: All the exercises/experiments should be completed as per the portions
above and kept for the practical test. The students shall be permitted to select any one
by lot for the test. The practical test should be conducted as per the scheme of
evaluation as below. The marks awarded shall be converted to 10 Marks for each
assessment test. Best of one will be considered for the internal assessment of 10
Marks.

Practical documents should be maintained for every experiment immediately after completion of the practice. The practical document should be submitted for the practical test. The same should be evaluated for 10 Marks for each exercise/experiment. The total

1091236242	Rocket Modeling	L	Т	Р	С
PRACTICUM	Rocket Wodeling	1	0	4	3

marks awarded should be converted to 10 Marks for the practical test as per the scheme of evaluation as below.

The details of the documents to be prepared as per the instruction below.

Each experiment should be completed on the day of practice. The same shall be evaluated for 10 marks on the day or next day of practice before commencement of the next experiment.

This documentation can be carried out in a separate notebook or a printed manual or a file with documents. The student should draw the Circuit Diagram and take readings, do calculations and prepare the Graph/Result manually in the documents.

The detailed date of the practices and its evaluations should be maintained in the course logbook. The log book and the practical documents should be submitted for the verification by the Flying Squad and DOTE Official.

SCHEME OF EVALUATION

PART	DESCRIPTION	MARKS
Α	Assembling	15
В	Servicing	20
С	Disassembling	15
	TOTAL	50
D	Practical Documents (As per the portions)	10
	Total Marks	60

 CA 3: Written Test for complete theory portions should be conducted for 100 Marks as per the question pattern below. The marks scored will be converted to 15 Marks for internal assessment.

1091236242	Rocket Modeling	L	Т	Р	С	
PRACTICUM	Rocket Wodeling	1	0	4	3	

Question pattern - Written Test Theory

Description		Marks		
Part – A	30 MCQ Questions.	30 X 1 Mark	30 Marks	
Part – B	7 Questions to be answered out of 10 Questions.	7 X 10 Marks	70 Marks	
TOTAL		100 Marks		

CA 4: All the exercises/experiments should be completed and kept for the practical test.
The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation below. After completion of all the exercises the practical test should be conducted as per End Semester Examination question pattern scheme of evaluation. The marks awarded should be converted to 15 Marks for the internal assessment.

SCHEME OF EVALUATION

Model Practical Examination and End Semester Examination - Practical Exam

PART	DESCRIPTION	MARKS
Α	Procedure	10
В	Assembling	15
С	Servicing	20
D	Disassembling	15
E	Written Test	30
F	Viva Voce	10
	TOTAL	100

Note: For the written test 30 MCQ shall be asked from the theory portions.

1091236242	Rocket Modeling	L	Т	Р	С
PRACTICUM	Rocket Wodeling	1	0	4	3

Syllabus Contents

Theory Portion UNIT - I Introduction of Rockets 3 History of Rockets - Rockets of the Modern ERA. Why rockets needed. Mission and payload - Trajectories - orbits - basic missile Trajectories. UNIT - II : How Rockets Works 3 Trust - Specific Impulse - weight flow rate - Tsio/kovsky's Rocket Equation - Staging - Rocket Dynamic, Control and guidance. UNIT - III How Rockets Engine Works 3 Basic rocket engine - Thermodynamic Expansion and the Rocket Nozzle - Exit Velocity - Rocket Engine Design Example. UNIT - IV Types of Rocket Engine - hybrid rocket engine - electric rocket engine - nuclear rocket engine - solar rocket engine - photon - based engine. UNIT - V: Test the Rocket 3 The system engineering process and rocket development - measuring trust - pressure vessel test - shake's bake test - drop & landing test - environment test - Destructiive Test - Modeling& simulation - roll out Test - Flight Test. Practical Exercises: Ex.No Name of the Experiment Period Practice + Test + Revision 10 Practice + Test + Revision 10			
History of Rockets – Rockets of the Modern ERA. Why rockets needed. Mission and payload – Trajectories – orbits – basic missile Trajectories. UNIT - III: How Rockets Works Trust – Specific Impulse – weight flow rate – Tsio/kovsky's Rocket Equation – Staging – Rocket Dynamic, Control and guidance. UNIT – III How Rockets Engine Works Basic rocket engine – Thermodynamic Expansion and the Rocket Nozzle – Exit Velocity – Rocket Engine Design Example. UNIT - IV Types of Rocket Engine — solar rocket engine – electric rocket engine – nuclear rocket engine – solar rocket engine – photon – based engine. UNIT – V: Test the Rocket The system engineering process and rocket development – measuring trust – pressure vessel test – shake's bake test – drop & landing test – environment test – Destructiive Test – Modeling& simulation – roll out Test – Flight Test. Practical Exercises: Ex.No Name of the Experiment Period 1 Develop a Model of Rocket using balsa wood with four to five members group Practice + Test + Revision 10	Theory P	Portion	
Why rockets needed. Mission and payload – Trajectories – orbits – basic missile Trajectories. UNIT - II: How Rockets Works Trust – Specific Impulse – weight flow rate – Tsio/kovsky's Rocket Equation – Staging – Rocket Dynamic, Control and guidance. UNIT – III How Rockets Engine Works Basic rocket engine – Thermodynamic Expansion and the Rocket Nozzle – Exit Velocity – Rocket Engine Design Example. UNIT - IV Types of Rocket Engine Solid Rocket – liquid propellant rocket engine – hybrid rocket engine – electric rocket engine – nuclear rocket engine – solar rocket engine – photon – based engine. UNIT – V: Test the Rocket 3 The system engineering process and rocket development – measuring trust – pressure vessel test – shake's bake test – drop & landing test – environment test – Destructiive Test – Modeling& simulation – roll out Test – Flight Test. Practical Exercises: Ex.No Name of the Experiment Develop a Model of Rocket using balsa wood with four to five members group Practice + Test + Revision 10	UNIT - I I	ntroduction of Rockets	3
Mission and payload – Trajectories – orbits – basic missile Trajectories. UNIT - II : How Rockets Works Trust – Specific Impulse – weight flow rate – Tsio/kovsky's Rocket Equation - Staging – Rocket Dynamic, Control and guidance. UNIT – III How Rockets Engine Works Basic rocket engine – Thermodynamic Expansion and the Rocket Nozzle – Exit Velocity – Rocket Engine Design Example. UNIT - IV Types of Rocket Engine Solid Rocket – liquid propellant rocket engine – hybrid rocket engine – electric rocket engine – nuclear rocket engine – solar rocket engine – photon – based engine. UNIT – V: Test the Rocket 3 The system engineering process and rocket development – measuring trust – pressure vessel test – shake's bake test – drop & landing test – environment test – Destructiive Test – Modeling& simulation – roll out Test – Flight Test. Practical Exercises: Ex.No Name of the Experiment Period 1 Develop a Model of Rocket using balsa wood with four to five members group Practice + Test + Revision 10	History o	f Rockets – Rockets of the Modern ERA.	
UNIT - II : How Rockets Works Trust - Specific Impulse - weight flow rate - Tsio/kovsky's Rocket Equation - Staging - Rocket Dynamic, Control and guidance. UNIT - III How Rockets Engine Works Basic rocket engine - Thermodynamic Expansion and the Rocket Nozzle - Exit Velocity - Rocket Engine Design Example. UNIT - IV Types of Rocket Engine UNIT - IV Types of Rocket Engine - hybrid rocket engine - electric rocket engine - nuclear rocket engine - solar rocket engine - photon - based engine. UNIT - V: Test the Rocket 3 The system engineering process and rocket development - measuring trust - pressure vessel test - shake's bake test - drop & landing test - environment test - Destructiive Test - Modeling& simulation - roll out Test - Flight Test. Practical Exercises: Ex.No Name of the Experiment Period 1 Develop a Model of Rocket using balsa wood with four to five members group Practice + Test + Revision 10	Why rock	kets needed.	
Trust - Specific Impulse - weight flow rate - Tsio/kovsky's Rocket Equation - Staging - Rocket Dynamic, Control and guidance. UNIT - III How Rockets Engine Works Basic rocket engine - Thermodynamic Expansion and the Rocket Nozzle - Exit Velocity - Rocket Engine Design Example. UNIT - IV Types of Rocket Engine Solid Rocket - liquid propellant rocket engine - hybrid rocket engine - electric rocket engine - nuclear rocket engine - solar rocket engine - photon - based engine. UNIT - V: Test the Rocket 3 The system engineering process and rocket development - measuring trust - pressure vessel test - shake's bake test - drop & landing test - environment test - Destructiive Test - Modeling& simulation - roll out Test - Flight Test. Practical Exercises: Ex.No Name of the Experiment Develop a Model of Rocket using balsa wood with four to five members group Practice + Test + Revision 10	Mission	and payload – Trajectories – orbits – basic missile Trajectories.	
Staging – Rocket Dynamic, Control and guidance. UNIT – III How Rockets Engine Works Basic rocket engine – Thermodynamic Expansion and the Rocket Nozzle – Exit Velocity – Rocket Engine Design Example. UNIT - IV Types of Rocket Engine Solid Rocket – liquid propellant rocket engine – hybrid rocket engine – electric rocket engine – nuclear rocket engine – solar rocket engine – photon – based engine. UNIT – V: Test the Rocket The system engineering process and rocket development – measuring trust – pressure vessel test – shake's bake test – drop & landing test – environment test – Destructiive Test – Modeling& simulation – roll out Test – Flight Test. Practical Exercises: Ex.No Name of the Experiment Period 1 Develop a Model of Rocket using balsa wood with four to five members group Practice + Test + Revision 10	UNIT - II	How Rockets Works	3
UNIT - III How Rockets Engine Works Basic rocket engine - Thermodynamic Expansion and the Rocket Nozzle - Exit Velocity - Rocket Engine Design Example. UNIT - IV Types of Rocket Engine Solid Rocket - liquid propellant rocket engine - hybrid rocket engine - electric rocket engine - nuclear rocket engine - solar rocket engine - photon - based engine. UNIT - V: Test the Rocket 3 The system engineering process and rocket development - measuring trust - pressure vessel test - shake's bake test - drop & landing test - environment test - Destructiive Test - Modeling& simulation - roll out Test - Flight Test. Practical Exercises: Ex.No Name of the Experiment Develop a Model of Rocket using balsa wood with four to five members group Practice + Test + Revision 10	Trust -	Specific Impulse - weight flow rate - Tsio/kovsky's Rocket Equation -	
Basic rocket engine – Thermodynamic Expansion and the Rocket Nozzle – Exit Velocity – Rocket Engine Design Example. UNIT - IV Types of Rocket Engine Solid Rocket – liquid propellant rocket engine – hybrid rocket engine – electric rocket engine – nuclear rocket engine – solar rocket engine – photon – based engine. UNIT – V: Test the Rocket 3 The system engineering process and rocket development – measuring trust – pressure vessel test – shake's bake test – drop & landing test – environment test – Destructiive Test – Modeling& simulation – roll out Test – Flight Test. Practical Exercises: Ex.No Name of the Experiment Period Develop a Model of Rocket using balsa wood with four to five members group Practice + Test + Revision 10	Staging	– Rocket Dynamic, Control and guidance.	
Velocity – Rocket Engine Design Example. UNIT - IV Types of Rocket Engine 3 Solid Rocket – liquid propellant rocket engine – hybrid rocket engine – electric rocket engine – nuclear rocket engine – solar rocket engine – photon – based engine. UNIT – V: Test the Rocket 3 The system engineering process and rocket development – measuring trust – pressure vessel test – shake's bake test – drop & landing test – environment test – Destructiive Test – Modeling& simulation – roll out Test – Flight Test. Practical Exercises: Ex.No Name of the Experiment Period 1 Develop a Model of Rocket using balsa wood with four to five members group Practice + Test + Revision 10	UNIT – II	How Rockets Engine Works	3
UNIT - IV Types of Rocket Engine 3 Solid Rocket - liquid propellant rocket engine - hybrid rocket engine - electric rocket engine - nuclear rocket engine - solar rocket engine - photon - based engine. UNIT - V: Test the Rocket 3 The system engineering process and rocket development - measuring trust - pressure vessel test - shake's bake test - drop & landing test - environment test - Destructiive Test - Modeling& simulation - roll out Test - Flight Test. Practical Exercises: Ex.No Name of the Experiment Period 1 Develop a Model of Rocket using balsa wood with four to five members group Practice + Test + Revision 10	Basic roo	cket engine – Thermodynamic Expansion and the Rocket Nozzle – Exit	
Solid Rocket – liquid propellant rocket engine – hybrid rocket engine – electric rocket engine – nuclear rocket engine – solar rocket engine – photon – based engine. UNIT – V: Test the Rocket The system engineering process and rocket development – measuring trust – pressure vessel test – shake's bake test – drop & landing test – environment test – Destructiive Test – Modeling& simulation – roll out Test – Flight Test. Practical Exercises: Ex.No Name of the Experiment Period Develop a Model of Rocket using balsa wood with four to five members group Practice + Test + Revision 10	Velocity	– Rocket Engine Design Example.	
rocket engine – nuclear rocket engine – solar rocket engine – photon – based engine. UNIT – V: Test the Rocket The system engineering process and rocket development – measuring trust – pressure vessel test – shake's bake test – drop & landing test – environment test – Destructiive Test – Modeling& simulation – roll out Test – Flight Test. Practical Exercises: Ex.No Name of the Experiment Period Develop a Model of Rocket using balsa wood with four to five members group Practice + Test + Revision 10	UNIT - IV	Types of Rocket Engine	3
engine. UNIT - V: Test the Rocket The system engineering process and rocket development - measuring trust - pressure vessel test - shake's bake test - drop & landing test - environment test - Destructiive Test - Modeling& simulation - roll out Test - Flight Test. Practical Exercises: Ex.No Name of the Experiment Period Develop a Model of Rocket using balsa wood with four to five members group Practice + Test + Revision 10	Solid Roo	cket – liquid propellant rocket engine – hybrid rocket engine – electric	
UNIT - V: Test the Rocket The system engineering process and rocket development - measuring trust - pressure vessel test - shake's bake test - drop & landing test - environment test - Destructiive Test - Modeling& simulation - roll out Test - Flight Test. Practical Exercises: Ex.No Name of the Experiment Period Develop a Model of Rocket using balsa wood with four to five members group Practice + Test + Revision 10	rocket er	ngine – nuclear rocket engine – solar rocket engine – photon – based	
The system engineering process and rocket development – measuring trust – pressure vessel test – shake's bake test – drop & landing test – environment test – Destructiive Test – Modeling& simulation – roll out Test – Flight Test. Practical Exercises: Ex.No Name of the Experiment Period 1 Develop a Model of Rocket using balsa wood with four to five members group Practice + Test + Revision 10	engine.		
pressure vessel test – shake's bake test – drop & landing test – environment test – Destructiive Test – Modeling& simulation – roll out Test – Flight Test. Practical Exercises: Ex.No Name of the Experiment Period 1 Develop a Model of Rocket using balsa wood with four to five members group Practice + Test + Revision 10	UNIT – V	Test the Rocket	3
Destructiive Test - Modeling& simulation - roll out Test - Flight Test. Practical Exercises: Ex.No Name of the Experiment Period 1 Develop a Model of Rocket using balsa wood with four to five members group Practice + Test + Revision 10	The syst	em engineering process and rocket development – measuring trust –	
Practical Exercises: Ex.No Name of the Experiment Period 1 Develop a Model of Rocket using balsa wood with four to five members group Practice + Test + Revision 10	pressure	vessel test – shake's bake test – drop & landing test – environment test –	
Ex.No Name of the Experiment Period 1 Develop a Model of Rocket using balsa wood with four to five members group Practice + Test + Revision 10	Destruct	iive Test - Modeling& simulation - roll out Test - Flight Test.	
Develop a Model of Rocket using balsa wood with four to five members group Practice + Test + Revision 10	Practical	Exercises:	
group Practice + Test + Revision 10	Ex.No	Name of the Experiment	Period
Practice + Test + Revision 10	1	Develop a Model of Rocket using balsa wood with four to five members	50
		group	
Total 75		Practice + Test + Revision	10
l l		Total	75

1091236242	Rocket Modeling	L	Т	Р	С
PRACTICUM	Rocket Wodeling	1	0	4	3

Suggested List of Students Activity:

Presentation/Seminars by students on any recent technological developments based on the course.

Periodic class quizzes conducted on a weekly/fortnightly based on the course.

Text book for Reference:

1. Travis. S. Taylor Cec Pras, Taylor & Francis Group Ration, London, New York.

Equipment / Facilities required to conduct the Practical Course.

S.No	Name of the Equipment's	Quantity Required
1.	Serviceable Rocket	1 No
2.	Assembling and dis assembling Tools	1 No

1091236242	Rocket Modeling	L	Т	Р	С
PRACTICUM	Rocket Wodeling	1	0	4	3

END SEMESTER EXAMINATIONS - PRACTICAL EXAM

Note:

All the exercises should be completed before the Board Practical Examinations. End Semester Practical examination should be conducted for all the exercises / experiments for 100 Marks. Students will be permitted to select any one exercise by lot or question paper supplied by the DOTE Exam section shall be used. The record of work done by the student should be submitted with a Bonafide Certificate.

SCHEME OF EVALUATION

PART	DESCRIPTION	MARKS
А	Procedure	10
В	Assembling	15
С	Servicing	20
D	Disassembling	15
E	Written Test	30
F	Viva Voce	10
	TOTAL	100

Note: For the written test 30 MCQ shall be asked from the theory portions.

1091236243	Flight Modeling	L	Т	Р	С
PRACTICUM	Flight Wodeling	1	0	4	3

Introduction:

This course forms the first exposure to the discipline of Aeronautical Engineering. It starts with familiarization of Flight. The subject is built up slowly and steadily by introducing the terminology and basis of Flight mechanics, structures, power plant, systems etc. At the end of the subject, the student will be fully acquainted with the basics of Aeronautical Engineering.

Course Objectives:

Understand the Fundamentals of Aeromodelling.

Comprehend Principles of Aerodynamics for Model Aircraft.

Acquire Knowledge of Materials, Construction Techniques, and Control Systems.

Familiarize with Aeromodelling Engines and Power Systems.

Develop Proficiency in Flight Stability and Safety Considerations.

Course Outcomes:

On successful completion of this course, the student will be able to

CO1: Describe the history of flight modelling.

CO2: Understand the principle of aerodynamics.

CO3: Learn the construction of flight and its material.

CO4: Describe the aircraft engine and power systems.

CO5: Demonstrate the flight stability and dynamics.

1091236243	Flight Modeling	L	Т	Р	С
PRACTICUM	Flight Wodeling	1	0	4	3

CO/PO Mapping

CO / PO	P01	P02	P03	P04	P05	P06	P07
C01	3	-	2	2	1	-	-
C02	3	2	2	2	2	-	-
C03	3	-	2	2	1	-	-
CO4	3	3	3	2	1	-	-
C05	3	2	3	2	1	-	-

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

Instructional Strategy:

Engage and Motivate: Instructors should actively engage students to boost their learning confidence.

Real-World Relevance: Incorporate relatable, real-life examples and engineering applications to help students understand and appreciate course concepts.

Interactive Learning: Utilize demonstrations and plan interactive student activities for an engaging learning experience.

Application-Based Learning: Employ a theory-demonstrate-practice-activity strategy throughout the course to ensure outcome-driven learning and employability.

Simulation and Real-World Practice: Conduct demonstrations and hands-on activities in a simulated environment, transitioning to real-world scenarios when possible.

Encourage Critical Analysis: Foster an environment where students can honestly assess experiment outcomes and analyze potential sources of error in case of discrepancies.

1091236243	Flight Modeling	L	Т	Р	С
PRACTICUM	Flight Wodeling	1	0	4	3

Assessment Methodology:

	Co	ontinuous Asses	sment (40 mark	(s)	End
	CA1	CA2	CA3	CA4	Semester Examination (60 marks)
Mode	Practical	Practical	Written Test	Practical	Practical
Mode	Test	Test	Theory	Test	Examination
Portion	Cycle I	Cycle II	All Units	All	All
1 ortion	Experiments	Experiments	All Ollits	Experiments	Experiments
Duration	2 Periods	2 Periods	3 Hours	3 Hours	3 hours
Exam Marks	60	60	100	100	100
Converted to Marks	10	10	15	15	60
Marks	1	0	15	15	60
Tentative Schedule	7th Week	14th Week	15th Week	16th Week	

Note:

 CA1 and CA2: All the exercises/experiments should be completed as per the portions above and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation as below. The marks awarded shall be converted to 10 Marks for each assessment test. Best of one will be considered for the internal assessment of 10 Marks.

Practical documents should be maintained for every experiment immediately after completion of the practice. The practical document should be submitted for the practical test. The same should be evaluated for 10 Marks for each exercise/experiment. The total

1091236243	Flight Modeling	L	Т	Р	С
PRACTICUM	Flight Wodening	1	0	4	3

marks awarded should be converted to 10 Marks for the practical test as per the scheme of evaluation as below.

The details of the documents to be prepared as per the instruction below.

Each experiment should be completed on the day of practice. The same shall be evaluated for 10 marks on the day or next day of practice before commencement of the next experiment.

This documentation can be carried out in a separate notebook or a printed manual or a file with documents. The student should draw the Circuit Diagram and take readings, do calculations and prepare the Graph/Result manually in the documents.

The detailed date of the practices and its evaluations should be maintained in the course logbook. The log book and the practical documents should be submitted for the verification by the Flying Squad and DOTE Official.

SCHEME OF EVALUATION

PART	PART DESCRIPTION		
А	Assembling	15	
В	Servicing	20	
С	Disassembling	15	
	TOTAL	50	
D	Practical Documents (As per the portions)	10	
	Total Marks	60	

 CA 3: Written Test for complete theory portions should be conducted for 100 Marks as per the question pattern below. The marks scored will be converted to 15 Marks for internal assessment.

1091236243	Flight Modeling	L	Т	Р	С
PRACTICUM	Flight Wodeling	1	0	4	3

Question pattern - Written Test Theory

Description		Marks		
Part – A	30 MCQ Questions.	30 X 1 Mark	30 Marks	
Part – B	7 Questions to be answered out of 10 Questions.	7 X 10 Marks	70 Marks	
TOTAL			100 Marks	

CA 4: All the exercises/experiments should be completed and kept for the practical test.
The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation below. After completion of all the exercises the practical test should be conducted as per End Semester Examination question pattern scheme of evaluation. The marks awarded should be converted to 15 Marks for the internal assessment.

SCHEME OF EVALUATION

Model Practical Examination and End Semester Examination - Practical Exam

PART	DESCRIPTION	MARKS
Α	Procedure	10
В	Assembling	15
С	Servicing	20
D	Disassembling	15
E	Written Test	30
F	Viva Voce	10
	TOTAL	100

Note: For the written test 30 MCQ shall be asked from the theory portions.

1091236243	Flight Madaling	L	Т	Р	С
PRACTICUM	Flight Modeling	1	0	4	3

Syllabus Contents

Theory Portion	
UNIT - I Introduction to Flight Modelling	3
Definition and Scope of Flight Modeling, History and Evolution of Flight modeling,	Types of
Model Aircraft, Importance and Applications of Aeromodelling in Aeronautical Engine	ering.
UNIT - II : Principles of Aerodynamics for Model Aircraft:	3
Basics of Aerodynamics, Newton's Laws of Motion and Aircraft Motion, Understan	ding the
Four Forces in Equilibrium, Aerodynamic Shapes and Airfoils Characteristics, Wing	g Design
and Aerodynamic Efficiency	
UNIT - III Materials, Construction Techniques, and Control Systems	3
Materials for Model Aircraft, Selection of Suitable Materials, Properties and Advan	tages of
Commonly Used Materials, Building Techniques for Different Components, Wing Con	struction
and Wing Loading, Fuselage and Tail Construction, Joining and Fastening Method	s, Gluing
and Bonding Techniques, Mechanical Fasteners and Their Application, Control Sys	stems in
Aero modelling, Mechanical Control Linkages	
UNIT - IV Aero modelling Engines and Power Systems	3
Types of Model Aircraft Engines, Glow Engines and Their Operation, Under	standing
Power-to-Weight Ratio, Importance of Power-to-Weight Ratio in Model Aircraft Perfor	mance.
UNIT - V: Flight Stability and Dynamics	3
Stability and Balance in Model Aircraft, Static and Dynamic Stability, Center of Gra	vity (CG)
and Center of Lift (CL) Considerations, Aerobatic Maneuvers and Their Principles, Lo	oop, Roll,
Immelmann Turn, and More, Understanding the Aerodynamics Behind Aerobatics	

1091236243	Flight Madaling	L	Т	Р	С
PRACTICUM	Flight Modeling	1	0	4	3

Practical Exercises:				
Ex.No	Name of the Experiment	Period		
1	Develop a Model of a two-seater Flight using balsa wood with four to five members of a group.	50		
	Practice + Test + Revision	10		
	Total	75		

Suggested List of Students Activity:

Presentation/Seminars by students on any recent technological developments based on the course.

Periodic class quizzes conducted on a weekly/fortnightly based on the course.

Text book for Reference:

- 1. E H J Pallet: Aircraft Instruments Principles and Applications, Himalayan Books.
- 2. Mechanics of Flight By A.C.Kermode.
- 3. E H J Pallet, Automatic Flight Control, Blackwell.
- 4. Leach Malvino, Digital Principles and Applications, Tata McGraw Hill.
- 5. "The Basics of Aeromodelling" by David Boddington.
- 6. "Model Aircraft Aerodynamics" by Martin Simons.
- 7. "Aeromodelling: An Introduction to Flight for Hobbyists" by Roger Winger.
- 8. "RCadvisor's Model Airplane Design Made Easy" by Carlos Reyes.
- 9. "The Art of Flying Model Aircraft: A Beginner's Guide" by Chris Chianelli Geared towards beginners.

1091236243	Flimba BA a dalina	L	Т	Р	С
PRACTICUM	Flight Modeling	1	0	4	3

Equipment / Facilities required to conduct the Practical Course.

S.No	Name of the Equipment's	Quantity Required
1.	Serviceable Flight	1 No
2.	Assembling and disassembling Tools	1 No

END SEMESTER EXAMINATIONS - PRACTICAL EXAM

Note:

All the exercises should be completed before the Board Practical Examinations. End Semester Practical examination should be conducted for all the exercises / experiments for 100 Marks. Students will be permitted to select any one exercise by lot or question paper supplied by the DOTE Exam section shall be used. The record of work done by the student should be submitted with a Bonafide Certificate.

SCHEME OF EVALUATION

PART	DESCRIPTION	MARKS
Α	Procedure	10
В	Assembling	15
С	Servicing	20
D	Disassembling	15
E	Written Test	30
F	Viva Voce	10
	TOTAL	100

Note: For the written test 30 MCQ shall be asked from the theory portions.

1092236351	Internship	540 Periods	С
PROJECT	internanip	3401 611003	12

Introduction

Internships in educational institutions are designed to provide students with practical experience in their field of study and to bridge the gap between academic knowledge and professional practice.

Objectives

After completing Internship, Interns will be able to,

- Apply the theoretical knowledge and skill during performance of the tasks assigned in internship.
- Demonstrate soft skills such as time management, positive attitude and communication skills during performance of the tasks assigned in internship.
- Document the Use case on the assigned Task.
- Enable interns to apply theoretical knowledge gained in the classroom to real-world practical applications.
- Provide hands-on experience in the industrial practices.
- Develop essential skills such as communication, organization, teamwork, and problem-solving.
- Enhance specific skills related to the intern's area of focus.
- Offer a realistic understanding of the daily operations and responsibilities.
- Provide opportunities to work under the guidance of experienced supervisors and administrators.
- Allow interns to explore different career paths.
- Help interns make informed decisions about their future career goals based on first hand experience.
- Facilitate the establishment of professional relationships with supervisor, administrators, and other professionals in the field.
- Provide access to a network of contacts that can be beneficial for future job opportunities and professional growth.

1092236351	Internship	540 Periods	C
PROJECT	internship	340 i enous	12

- Foster personal growth by challenging interns to step out of their comfort zones and take on new responsibilities.
- Build confidence and self-efficacy through successful completion of internship tasks and projects.
- Give insight into the policies, regulations, and administrative practices.
- Allow interns to observe and understand the implementation of standards and policies in practice.
- Provide opportunities for constructive feedback from supervisors and mentors, aiding in the intern's professional development.
- Enable self-assessment and reflection on strengths, areas for improvement, and career aspirations.
- Encourage sensitivity to the needs and backgrounds of different groups, promoting inclusive and equitable industrial practices.

Course Outcomes

- CO 1: Demonstrate improved skills.
- CO 2: Exhibit increased professional behavior.
- CO 3: Apply theoretical knowledge and principles in real-world practices.
- CO 4: Develop and utilize assessment tools to evaluate the learning and practices.
- CO 5: Engage in reflective practice to continually improve their learning and professional growth.

Facilitating the Interns by an Internship Provider.

Orient intern in the new workplace. Give interns an overview of the organization, Explain the intern's duties and introduce him or her to co-workers.

Develop an internship job description with clear deliverables and timeline.

Allow the interns in meetings and provide information, resources, and opportunities for professional development.

1092236351	Internship	540 Periods	С
PROJECT	internship	340 Fellous	12

The interns have never done this kind of work before, they want to know that their work is measuring up to organizational expectations, hence provide professional guidance and mentoring to the intern.

Daily progress report of Intern is to be evaluated by industry supervisor. examine what the intern has produced and make suggestions. Weekly supervision meetings can help to monitor the intern's work.

Duties Responsibilities of the Faculty Mentor

To facilitate the placement of students for the internship

To liaison between the college and the internship provider

To assist the Industrial Training Supervisor during assessment

Instructions to the Interns

- Students shall report to the internship provider on the 1st day as per the internship schedule.
- Intern is expected to learn about the organization, its structure, product range, market performance, working philosophy etc.
- The interns shall work on live projects assigned by the internship provider.
- The Intern shall record all the activities in the daily log book and get the signature of the concerned training supervisor.
- Intern shall have 100% attendance during internship programme. In case of unavoidable circumstances students may avail leave with prior permission from the concerned training supervisor of the respective internship provider. However, the maximum leave permitted during internship shall be as per company norms where they are working and intern shall report the leave sanctioned details to their college faculty mentor.
- The interns shall abide all the Rules and Regulations of internship provider
- Intern shall follow all the safety Regulations of internship provider.
- On completion of the internship, the intern shall report to the college and submit
 the internship certificate mentioning duration of internship, evaluation of interns by
 internship provider, Student's Diary and Comprehensive Training Report.

1092236351	Internship	540 Periods	С	
PROJECT	internship	3401 611003	12	

Attendance Certification

Every month students have to get their attendance certified by the industrial supervisor in the prescribed form supplied to them. Students have also to put their signature on the form and submit it to the institution supervisor. Regularity in attendance and submission of report will be duly considered while awarding the Internal Assessment mark.

Training Reports

The students have to prepare two types of reports: Weekly reports in the form of a diary to be submitted to the concerned staff in-charge of the institution. This will be reviewed while awarding Internal

Industrial Training Diary

Students are required to maintain the record of day-to-day work done. Such a record is called Industrial training Diary. Students have to write this report regularly. All days for the week should be accounted for clearly giving attendance particulars (Presence, absence, Leave, Holidays etc.). The concern of the Industrial supervisor is to periodically check these progress reports.

Comprehensive Training Report

In addition to the diary, students are required to submit a comprehensive report on training with details of the organisation where the training was undergone after attestation by the supervisors. The comprehensive report should incorporate study of plant/product/process/construction along with intensive in-depth study on any one of the topics such as processes, methods, tooling, construction and equipment, highlighting aspects of quality, productivity and system. The comprehensive report should be completed in the last week of Industrial training.

Any data, drawings etc. should be incorporated with the consent of the Organisation.

1092236351	Internship	540 Periods	C
PROJECT	internship	340 i enous	12

Scheme of Evaluation

Internal Assessment

Students should be assessed for 50 Marks by industry supervisor and polytechnic faculty mentor during 8th Week and 15th Week. The total marks (50 + 50) scored shall be converted to 40 marks for the Internal Assessment.

Sl. No.	Description	Marks
А	Punctuality and regularity. (Attendance)	10
В	Level / proficiency of practical skills acquired. Initiative in learning / working at site	10
С	Ability to solve practical problems. Sense of responsibility	10
D	Self expression / communication skills. Interpersonal skills / Human Relation.	10
E	Report and Presentation.	10
	Total	50

1092236351	- Internship	540 Periods	С
PROJECT	internship	340 i enous	12

End Semester Examination - Project Exam

Students should be assessed for 100 Marks both by the internal examiner and external examiner appointed by the Chairman Board of Examinations after the completion of internship period (Dec - May). The marks scored will be converted to 60 marks for the End Semester Examination.

Sl. No.	Description	Marks
Α	Daily Activity Report.	20
В	Comprehensive report on Internship, Relevant Internship Certificate from the concerned department.	30
С	Presentation by the student at the end of the Internship.	30
D	Viva Voce	20
	Total	100

1092236353	Fellowship	540 Periods	С
PROJECT	i enowsinp	340 i enous	12

Introduction

The Fellowship in the Diploma in Engineering program is designed to provide aspiring engineers with a comprehensive educational experience that combines theoretical knowledge with practical skills. This fellowship aims to cultivate a new generation of proficient and innovative engineers who are equipped to meet the challenges of a rapidly evolving technological landscape.

Participants in this fellowship will benefit from a robust curriculum that covers core engineering principles, advanced technical training, and hands-on projects. The program emphasizes interdisciplinary learning, encouraging fellows to explore various branches of engineering, from mechanical and civil to electrical, electronics & communication and computer engineering. This approach ensures that graduates possess a versatile skill set, ready to adapt to diverse career opportunities in the engineering sector.

In addition to academics, the fellowship offers numerous opportunities for professional development. Fellows will engage with industry experts through seminars, workshops, and internships, gaining valuable insights into real-world applications of their studies. Collaborative projects and research initiatives foster a culture of innovation, critical thinking, and problem-solving, essential attributes for any successful engineer.

By offering this fellowship, participants become part of a vibrant community of learners and professionals dedicated to advancing the field of engineering. The program is committed to supporting the growth and development of each fellow, providing them with the tools and resources needed to excel both academically and professionally.

The Fellowship in the Diploma in Engineering is more than just an educational endeavor; it is a transformative journey that equips aspiring engineers with the knowledge, skills, and experiences necessary to make significant contributions to society and the engineering profession.

1092236353	Fellowship	540 Periods	С
PROJECT	i enowship	340 i enous	12

Objectives

After completing students will be able to,

- Provide fellows with a solid foundation in core engineering principles and advanced technical knowledge across various engineering disciplines.
- Equip fellows with hands-on experience through laboratory work, projects, and internships, ensuring they can apply theoretical knowledge to real-world scenarios.
- Promote interdisciplinary understanding by encouraging exploration and integration of different engineering fields, fostering versatility and adaptability in fellows.
- Encourage innovation and creativity through research projects and collaborative initiatives, enabling fellows to develop new solutions to engineering challenges.
- Facilitate professional growth through workshops, seminars, and interactions with industry experts, preparing fellows for successful careers in engineering.
- Develop critical thinking and problem-solving skills, essential for tackling complex engineering problems and making informed decisions.
- Strengthen connections between academia and industry by providing opportunities for internships, industry visits, and guest lectures from professionals.
- Foster leadership qualities and teamwork skills through group projects and collaborative activities, preparing fellows for leadership roles in their future careers.
- Instill a sense of ethical responsibility and awareness of the social impact of engineering practices, encouraging fellows to contribute positively to society.
- Promote a culture of lifelong learning, encouraging fellows to continually update their knowledge and skills in response to technological advancements and industry trends.
- Prepare fellows to work in a global engineering environment by exposing them to international best practices, standards, and cross-cultural experiences.

1092236353	Fellowship	540 Periods	С
PROJECT	i enowship	340 i enous	12

Course Outcomes

- **CO 1:** Demonstrate a strong understanding of core engineering principles and possess the technical skills necessary to design, analyze, and implement engineering solutions across various disciplines.
- **CO 2:** Apply theoretical knowledge to practical scenarios, effectively solving engineering problems through hands-on projects, laboratory work, and internships.
- **CO 3:** Exhibit the ability to conduct research, develop innovative solutions, and contribute to advancements in engineering through critical thinking and creative approaches to complex challenges.
- **CO 4:**Understand and adhere to professional and ethical standards in engineering practice, demonstrating responsibility, integrity, and a commitment to sustainable and socially responsible engineering.
- **CO 5:** Enhance strong communication skills, both written and verbal, and be capable of working effectively in teams, demonstrating leadership and collaborative abilities in diverse and multidisciplinary environments.

Important points to consider to select the fellowship project.

Selecting the right fellowship project is crucial for maximizing the educational and professional benefits of a Diploma in Engineering program.

- Relevance to Future Plans: Choose a project that aligns with your long-term career aspirations and interests. This alignment will ensure that the skills and knowledge you gain will be directly applicable to your desired career path.
- Industry Relevance: Consider the current and future relevance of the project within the industry. Opt for projects that address contemporary challenges or emerging trends in engineering.
- Access to Facilities: Ensure that the necessary facilities, equipment, and materials are
 available to successfully complete the project. Lack of resources can hinder the
 progress and quality of your work.

1092236353	Fellowship	540 Periods	С
PROJECT	renowship	340 T enous	12

- Mentorship and Guidance: Select a project that offers strong mentorship and support from experienced faculty members or industry professionals. Effective guidance is crucial for navigating complex problems and achieving project objectives.
- Project Scope: Assess the scope of the project to ensure it is neither too broad nor too narrow. A well-defined project scope helps in setting clear objectives and achievable milestones.
- **Feasibility**: Evaluate the feasibility of completing the project within the given timeframe and with the available resources. Consider potential challenges and ensure you have a realistic plan to address them.
- **Technical Skills**: Choose a project that allows you to develop and enhance important technical skills relevant to your field of study. Practical experience in using specific tools, technologies, or methodologies can be highly beneficial.
- **Soft Skills**: Consider projects that also offer opportunities to develop soft skills such as teamwork, communication, problem-solving, and project management.
- **Innovative Thinking**: Select a project that encourages creativity and innovative problem-solving. Projects that push the boundaries of traditional engineering approaches can be particularly rewarding.
- Societal Impact: Consider the potential impact of your project on society or the
 engineering community. Projects that address significant challenges or contribute to
 social good can be highly fulfilling and make a meaningful difference.

Guidelines to select Fellowship

- Ensure the program is accredited by a recognized accrediting body and has a strong reputation for quality education in engineering.
- Ensure it covers core engineering principles that align with your interests and career goals.
- Investigate the qualifications and experience of the faculty mentor. Look for programs
 with faculty who have strong academic backgrounds, industry experience, and active
 involvement in research.

1092236353	Fellowship	540 Periods	С
PROJECT	renowship	340 T enous	12

- Check if the program provides adequate hands-on training opportunities, such as laboratory work, workshops, and access to modern engineering facilities and equipment.
- Assess the program's connections with industry. Strong partnerships with companies
 can lead to valuable internship opportunities, industry projects, and exposure to
 real-world engineering challenges.
- Explore the availability of research opportunities. Participation in research projects can enhance your learning experience and open doors to innovative career paths.
- Look for programs that offer professional development resources, such as workshops, seminars, and networking events with industry professionals and alumni.
- Ensure the program provides robust support services, including academic advising, career counseling, mentorship programs, and assistance with job placement after graduation.
- Consider the cost of the program and available financial aid options, such as scholarships, grants, and fellowships. Evaluate the return on investment in terms of career prospects and potential earnings.
- Research the success of the program's alumni. High employment rates and successful
 careers of past graduates can indicate the program's effectiveness in preparing students
 for the engineering field.

Duties Responsibilities of the Faculty Mentor

Each student should have a faculty mentor for the Institute.

- Get the approval from the Chairman Board of Examinations with the recommendations of the HOD/Principal for the topics.
- Provide comprehensive academic advising to help fellows select appropriate specializations, and research projects that align with their interests and career goals.
- Guide fellows through their research projects, offering expertise and feedback to ensure rigorous methodology, innovative approaches, and meaningful contributions to the field.
- Assist fellows in developing technical and professional skills through hands-on projects,
 laboratory work, and practical applications of theoretical knowledge.

1092236353	Fellowship	540 Periods	С
PROJECT	i enowsinp	3401 611003	12

- Offer career advice and support, helping fellows explore potential career paths, prepare for job searches, and connect with industry professionals and opportunities.
- Provide personal mentorship, fostering a supportive relationship that encourages growth, resilience, and a positive academic experience.
- Facilitate connections between fellows and industry professionals, alumni, and other relevant networks to enhance their professional opportunities and industry exposure.
- Ensure fellows have access to necessary resources, including research materials, lab equipment, software, and academic literature.
- Regularly monitor and evaluate the progress of fellows, providing constructive feedback and guidance to help them stay on track and achieve their goals.
- Instill and uphold high ethical and professional standards, encouraging fellows to practice integrity and responsibility in their work.
- Assist with administrative tasks related to the fellowship program, such as preparing progress reports, writing recommendation letters, and facilitating grant applications.
- Organize and participate in workshops, seminars, and other educational events that enhance the learning experience and professional development of fellows.
- Address any issues or conflicts that arise, providing mediation and support to ensure a
 positive and productive academic environment.

Instructions to the Fellowship Scholar

- Regularly meet with your faculty mentor for guidance on academic progress, research projects, and career planning. Be proactive in seeking advice and support from your mentor.
- Develop strong organizational skills. Use planners, calendars, and task management tools to keep track of assignments, project deadlines, and study schedules. Prioritize tasks to manage your time efficiently.
- Take advantage of opportunities to participate in research projects and hands-on activities. These experiences are crucial for applying your theoretical knowledge and gaining practical skills.

1092236353	Fellowship	540 Periods	С
PROJECT	renowsinp	3401 611003	12

- Focus on improving essential professional skills such as communication, teamwork, problem-solving, and leadership. Participate in workshops and seminars that enhance these competencies.
- Actively seek networking opportunities through industry events, seminars, and meetings.
 Establish connections with peers, alumni, and professionals in your field to build a strong professional network.
- Seek internships, co-op programs, or part-time jobs related to your field of study.
 Real-world experience is invaluable for understanding industry practices and enhancing your employability.
- Uphold high ethical standards in all your academic and professional activities. Practice
 integrity, honesty, and responsibility. Adhere to the ethical guidelines and standards set
 by your institution and the engineering profession.
- Adopt a mindset of lifelong learning. Stay updated with the latest developments and trends in engineering by reading industry journals, attending conferences, and taking additional courses.

Documents to be submitted by the student to offer fellowship.

- Completed Application Form: This is typically the standard form provided by the institution or fellowship program that includes personal information, educational background, and other relevant details.
- **Detailed CV/Resume**: A comprehensive document outlining your educational background, knowledge experience, interest in research experience, publications, presentations, awards, and other relevant achievements if any.
- **Personal Statement**: A document explaining your motivation for applying to the fellowship, your career goals, how the fellowship aligns with those goals, and what you intend to achieve through the program.
- Recommendation Letters: Letters from faculty mentor, employer, or professionals who
 can attest to your academic abilities, professional skills, and suitability for the
 fellowship.

1092236353	Fellowship	540 Periods	С
PROJECT	renowship	340 T enous	12

- Proposal/Description: A detailed proposal or description of the fellowship project or study you plan to undertake during the fellowship. This should include objectives, methodology, expected outcomes, and significance of the project.
- **Enrollment Verification**: Documentation verifying your current acceptance status in the academic institution or industry where the fellowship will be conducted.
- **Funding Information**: Details about any other sources of funding or financial aid you are receiving, if applicable. Some fellowships may also require a budget proposal for the intended use of the fellowship funds.
- Samples of Work: Copies of the relevant work that demonstrates your capabilities and accomplishments in your field.
- **Endorsement Letter**: A letter from your current academic institution endorsing your application for the fellowship, if required.
- Ethical Approval Documents: If your research involves human subjects or animals, you may need to submit proof of ethical approval from the relevant ethics committee.
- **Additional Documents**: Any other documents requested by the fellowship program required by the institution.

Attendance Certification

Every month students have to get their attendance certified by the supervisor in the prescribed form supplied to them. Students have also to put their signature on the form and submit it to the faculty mentor. Regularity in attendance and submission of report will be duly considered while awarding the Internal Assessment mark.

1092236353	Fellowship	540 Periods	С
PROJECT	renowship	340 i enous	12

Rubrics for Fellowship. Review I & II.

SI. No.	Topics	Description
1	Alignment with Objectives	Assess how well the project aligns with the stated objectives and requirements. Determine if the student has addressed the key aspects outlined in the project guidelines.
2	Depth of Research:	Evaluate the depth and thoroughness of the literature review. Assess the student's ability to identify and address gaps in existing research.
3	Clarity of Objectives:	Check if the student has clearly defined and articulated the objectives of the project. Ensure that the objectives are specific, measurable, achievable, relevant, and time-bound (SMART).
4	Methodology and Data Collection:	Evaluate the appropriateness and justification of the research methodology. Assess the methods used for data collection and their relevance to the research questions.
5	Analysis and Interpretation:	Examine the quality of data analysis techniques used. Assess the student's ability to interpret results and draw meaningful conclusions.
6	Project Management:	Evaluate the project management aspects, including adherence to timelines and milestones. Assess the student's ability to plan and execute the project effectively.

1092236353	Fellowship	540 Periods	С
PROJECT	renowsinp	340 T enous	12

7	Documentation and Reporting:	Check the quality of documentation, including code, experimental details, and any other relevant materials. Evaluate the clarity, structure, and coherence of the final report.
8	Originality and Creativity:	Assess the level of originality and creativity demonstrated in the project. Determine if the student has brought a unique perspective or solution to the research problem.
9	Critical Thinking:	Evaluate the student's critical thinking skills in analyzing information and forming conclusions. Assess the ability to evaluate alternative solutions and make informed decisions.
10	Problem-Solving Skills:	Evaluate the student's ability to identify and solve problems encountered during the project. Assess adaptability and resilience in the face of challenges.

1092236353	Fellowship	540 Periods	С
PROJECT	renowsinp	340 T enous	12

INTERNAL MARKS - 40 Marks

As per the rubrics each topic should be considered for the Review I and Review II. Equal weightage should be given for all the topics. It should be assessed by a faculty mentor and the industrial professional or research guide.

Review 1 shall be conducted after 8th week and Review 2 shall be conducted after 14th week in the semester. Average marks scored in the reviews shall be considered for the internal assessment of 30 Marks.

Scheme of Evaluation

PART	DESCRIPTION	MARKS
Α	Assessment as per the rubrics.	30
В	Attendance	10
Total		40

1092236353	Fellowship	540 Periods	С
PROJECT	renowship	340 i enous	12

END SEMESTER EXAMINATION - Project Exam

Students should be assessed for 100 Marks both by the internal examiner and external examiner appointed by the Chairman Board of Examinations after the completion of fellowship. The marks scored will be converted to 60 marks for the End Semester Examination.

Sl. No.	Description	Marks
Α	Daily Activity Report.	20
В	Comprehensive report of the Fellowship Work.	30
С	Presentation by the student.	30
D	Viva Voce	20
	Total	100

1092236374	In-house Project	540 Periods	С	
PROJECT	iii iiouse i roject	340 i enous	12	

Introduction

Every student must do one major project in the Final year of their program. Students can do their major project in Industry or R&D Lab or in-house or a combination of any two for the partial fulfillment for the award of Diploma in Engineering.

For the project works, the Department will constitute a three-member faculty committee to monitor the progress of the project and conduct reviews regularly.

If the projects are done in-house, the students must obtain the bonafide certificate for project work from the Project supervisor and Head of the Department, at the end of the semester. Students who have not obtained the bonafide certificate are not permitted to appear for the Project Viva Voce examination.

For the projects carried out in Industry, the students must submit a separate certificate from Industry apart from the regular bonafide certificate mentioned above. For Industry related projects there must be one internal faculty advisor / Supervisor from Industry (External), this is in addition to the regular faculty supervision.

The final examination for project work will be evaluated based on the final report submitted by the project group **of not exceeding four students**, and the viva voce by an external examiner.

Objectives

Academic project work plays a crucial role in the education of Diploma in Engineering students, as it helps them apply theoretical knowledge to practical situations and prepares them for real-world engineering challenges.

- **Integration of Knowledge**: Consolidate and integrate theoretical knowledge acquired in coursework to solve practical engineering problems.
- **Skill Development**: Enhance technical skills related to the specific field of engineering through hands-on experience and application.
- **Problem-Solving Abilities**: Develop critical thinking and problem-solving abilities by addressing complex engineering issues within a defined scope.
- Project Management: Gain experience in project planning, execution, and management, including setting objectives, timelines, and resource allocation.

1092236374	In-house Project	540 Periods	С
PROJECT	in-nouse Project	340 i enous	12

- **Teamwork and Collaboration**: Foster teamwork and collaboration by working in multidisciplinary teams to achieve project goals and objectives.
- Research Skills: Acquire research skills by conducting literature reviews, gathering relevant data, and applying research methodologies to investigate engineering problems.
- Innovation and Creativity: Encourage innovation and creativity in proposing and developing engineering solutions that may be novel or improve upon existing methods.
- **Communication Skills**: Improve communication skills, both oral and written, by presenting project findings, writing technical reports, and effectively conveying ideas to stakeholders.
- **Ethical Considerations**: Consider ethical implications related to engineering practices, including safety, environmental impact, and societal concerns.
- **Professional Development**: Prepare for future professional roles by demonstrating professionalism, initiative, and responsibility throughout the project lifecycle.

Course Outcomes

- **CO 1:** Demonstrate the ability to apply theoretical concepts and principles learned in coursework to solve practical engineering problems encountered during the project.
- **CO 2:** Develop and enhance technical skills specific to the field of engineering relevant to the project, such as design, analysis, simulation, construction, testing, and implementation.
- **CO 3:** Apply critical thinking and problem-solving skills to identify, analyze, and propose solutions to engineering challenges encountered throughout the project lifecycle.
- **CO 4:** Acquire project management skills by effectively planning, organizing, and executing project tasks within defined timelines and resource constraints.
- **CO 5:** Improve communication skills through the preparation and delivery of project reports, presentations, and documentation that effectively convey technical information to stakeholders.

Important points to consider to select the In-house project.

1092236374	In house Dreiget	540 Periods	С
PROJECT	In-house Project	340 T enous	12

- Selecting a project work in Diploma Engineering is a significant decision that can greatly influence your learning experience and future career prospects.
- Choose a project that aligns with your career aspirations and interests within the field of
 engineering. Consider how the project can contribute to your professional development
 and future opportunities.
- Ensure the project aligns with your coursework and specialization within the Diploma program. It should complement and build upon the knowledge and skills you have acquired in your studies.
- Evaluate the scope of the project to ensure it is manageable within the given timeframe, resources, and constraints. Avoid projects that are overly ambitious or impractical to complete effectively.
- Assess the availability of resources needed to conduct the project, such as equipment, materials, laboratory facilities, and access to relevant software or tools. Lack of resources can hinder project progress.
- Select a project that genuinely interests and motivates you. A project that captures your curiosity and passion will keep you engaged and committed throughout the project duration.
- Consider the availability and expertise of faculty advisors or industry mentors who can provide guidance and support throughout the project. Effective mentorship is crucial for success.
- Clearly define the learning objectives and expected outcomes of the project. Ensure that
 the project will help you achieve specific learning goals related to technical skills,
 problem-solving, and professional development.
- Look for opportunities to propose innovative solutions or explore new methodologies within your project. Projects that encourage creativity can set you apart and enhance your learning experience.
- Consider ethical implications related to the project, such as safety protocols, environmental impact, and compliance with ethical guidelines in research and engineering practices.

1092236374	In-house Project	540 Periods	С	
PROJECT	III-liouse r Toject	J40 i ellous	12	

- Evaluate whether the project offers opportunities for collaboration with peers, experts
 from other disciplines, or industry partners. Interdisciplinary projects can broaden your
 perspective and enhance your teamwork skills.
- Consider the potential impact of your project on society or the engineering community.
 Projects that address significant challenges or contribute to social good can be highly fulfilling and make a meaningful difference.

By carefully considering these points, Diploma Engineering students can make informed decisions when selecting project work that not only enhances their academic learning but also prepares them for successful careers in engineering.

Duties Responsibilities of the internal faculty advisor.

Each group should have an internal faculty advisor assigned by the HOD/Principal.

- The in-house project should be approved by the project monitoring committee constituted by the Chairman Board of Examinations.
- The in-house project should be selected in the fifth semester itself. Each in-house project shall have a maximum of four students in the project group.
- Provide comprehensive academic advising to help in the selection of appropriate in-house project that align with their interests and career goals.
- Offer expertise and feedback to ensure rigorous methodology, innovative approaches, and meaningful contributions to the field.
- Assist in developing technical and professional skills through hands-on projects, laboratory work, and practical applications of theoretical knowledge.
- Provide personal mentorship, fostering a supportive relationship that encourages growth, resilience, and a positive academic experience.
- Facilitate connections between students and industry professionals, alumni, and other relevant networks to enhance their professional opportunities and industry exposure.
- Ensure students have access to necessary resources, including research materials, lab equipment, software, and academic literature.

1092236374	In-house Project	540 Periods	С
PROJECT	in-nouse Project	340 i enous	12

- Regularly monitor and evaluate the progress of the in-house project, providing constructive feedback and guidance to help them stay on track and achieve their goals.
- Instill and uphold high ethical and professional standards, encouraging students to practice integrity and responsibility in their work.
- Assist in preparing progress reports, writing recommendation letters, and facilitating grant applications.
- Organize and participate in workshops, seminars, and other educational events that enhance the learning experience and professional development.
- Address any issues or conflicts that arise, providing mediation and support to ensure a
 positive and productive academic environment.

Instructions to the students.

- Regularly meet with your internal faculty advisor for guidance on academic progress, research projects, and career planning. Be proactive in seeking advice and support from your faculty advisor.
- Use planners, calendars, and task management tools to keep track of assignments, project deadlines, and study schedules. Prioritize tasks to manage your time efficiently.
- Take advantage of opportunities to participate in in-house projects and hands-on activities. These experiences are crucial for applying your theoretical knowledge and gaining practical skills.
- Focus on improving essential professional skills such as communication, teamwork, problem-solving, and leadership. Participate in workshops and seminars that enhance these competencies.
- Actively seek networking opportunities through industry events, seminars, and meetings.
 Establish connections with peers, alumni, and professionals in your field to build a strong professional network.
- Seek internships, co-op programs, or part-time jobs related to your field of study.
 Real-world experience is invaluable for understanding industry practices and enhancing your employability.

1092236374	In-house Project	540 Periods	С
PROJECT	in-nouse Project	340 T enous	12

- Uphold high ethical standards in all your academic and professional activities. Practice integrity, honesty, and responsibility. Adhere to the ethical guidelines and standards set by your institution and the engineering profession.
- Adopt a mindset of lifelong learning. Stay updated with the latest developments and trends in engineering by reading industry journals, attending conferences, and taking additional courses.

Documents to be submitted by the student for an in-house project.

Submit a printed report of your in-house project work along with the fabrication model / analysis report for the End Semester Examination.

Rubrics for In-House Project Work

SI. No.	Topics	Description
1	Objectives	Clearly defined and specific objectives outlined. Objectives align with the project's scope and purpose.
2	Literature Review	Thorough review of relevant literature. Identification of gaps and justification for the project's contribution.
3	Research Design and Methodology	Clear explanation of the research design. Appropriateness and justification of chosen research methods.
4	Project Management	Adherence to project timeline and milestones. Effective organization and planning evident in the project execution.
5	Documentation	Comprehensive documentation of project details. Clarity and completeness in recording methods, results, and challenges.

1092236374	In-house Project	540 Periods	С
PROJECT	in-nouse Project	340 i enous	12

6	Presentation Skills	Clear and articulate communication of project findings. Effective use of visuals, if applicable.
7	Analysis and Interpretation	In-depth analysis of data. Clear interpretation of results in the context of research questions.
8	Problem-Solving	Demonstrated ability to identify and address challenges encountered during the project. Innovative solutions considered where applicable.
9	Professionalism and Compliance	Adherence to ethical standards in research. Compliance with project guidelines and requirements.
10	Quality of Work	Overall quality and contribution of the project to the field. Demonstrated effort to produce high-quality work.

SCHEME OF EVALUATION

The mark allocation for Internal and End Semester Viva Voce are as below.

Internal Marks (40 Marks)*			
Review 1 Review 2 Review 3 (10 Marks) (15 Marks) (15 marks)			
Committee: 5 Marks. Supervisor: 5 Marks	Committee: 7.5 Marks Supervisor: 7.5 Marks	Committee: 7.5 Marks Supervisor: 7.5 Marks	

Note: * The rubrics should be followed for the evaluation of the internal marks during reviews.

1092236374	In-house Project	540 Periods	С
PROJECT	ili-ilouse r roject	340 T enous	12

END SEMESTER EXAMINATION - Project Exam

The performance of each student in the project group would be evaluated in a viva voce examination conducted by a committee consisting of an external examiner and the project supervisor and an internal examiner.

End Semester (100)#			
Record (20 Marks)	Presentation (20 Marks)	Viva Voce (20 Marks)	Model / Analysis Report (40 Marks)
External: 10 Internal: 5 Supervisor: 5	External: 10 Internal: 5 Supervisor: 5	External: 10 Internal: 5 Supervisor: 5	External: 20 Internal: 10 Supervisor: 10

^{*}The marks scored will be converted to 60 Marks.

